

Welcome to Laggron’s Dumb Cogs’s official documentation!

[image: discord.py]
 [https://github.com/Rapptz/discord.py][image: Travis CI build]
 [https://github.com/retke/Laggrons-Dumb-Cogs/actions][image: Docs build]
 [http://laggrons-dumb-cogs.readthedocs.io][image: PRs open]
 [http://makeapullrequest.com][image: _images/wiki.png]

Important

Please make sure that you first installed
Red DiscordBot V3 [https://red-discordbot.readthedocs.io/en/v3-develop/].
This is needed if you want to use these cogs.

Cog guides

	InstantCommands
	Installation

	Usage

	Frequently Asked Questions

	RoleInvite
	Installation

	Usage

	Frequently Asked Question

	Say
	Installation

	Usage

	Frequently Asked Questions

	Tournaments
	Installation

	Usage

	Additional resources

	WarnSystem
	Installation

	Usage

	Commands

	Additional resources

API Reference

	RoleInvite
	API Reference

	Errors

	Tournaments
	API Reference

	WarnSystem
	API Reference

	Errors

Indices and tables

	Index

	Module Index

	Search Page

InstantCommands

Note

These docs refers to the version 1.3.0.
Make sure you’re under the good version by typing [p]cog update.

This is the guide for the instantcmd cog. Everything you need is here.

[p] is considered as your prefix.

Installation

To install the cog, first load the downloader cog, included
in core Red.:

[p]load downloader

Then you will need to install the Laggron’s Dumb Cogs repository:

[p]repo add Laggrons-Dumb-Cogs https://github.com/retke/Laggrons-Dumb-Cogs v3

Finally, you can install the cog:

[p]cog install Laggrons-Dumb-Cogs instantcmd

Warning

The cog is not loaded by default.
To load it, type this:

[p]load instantcmd

Usage

InstantCommands is designed to create new commands and listeners directly
from Discord. You just need basic Python and discord.py knowledge.

You can also edit the Dev’s environment added with Red 3.4.6.

Here’s an example of how it works:

[image: _images/InstantCommands-example.png]
Here’s a list of all commands of this cog:

instantcommand

Syntax:

[p][instacmd|instantcmd|instantcommand]

Description

This is the main command used for setting up the code.
It will be used for all other commands.

instantcommand create

Syntax:

[p]instantcommand [create|add]

Description

Creates a new command/listener from a code snippet.

You will be asked to give a code snippet which will contain your function.
It can be a command (you will need to add the commands decorator) or a listener
(your function name must correspond to an existing discord.py listener).

Tip

Here are some examples

@commands.command()
async def command(ctx, *, argument):
 """Say your text with some magic"""

 await ctx.send("You excepted to see your text, "
 "but it was I, Dio!")

return command

async def on_reaction_add(reaction, user):
 if user.bot:
 return
 await reaction.message.add_reaction('❤')
 await reaction.message.channel.send("Here's some love for " + user.mention)

return on_reaction_add

Note

Here are the available values for your code snippet:

	bot (client object)

	discord

	asyncio

	redbot

If you try to add a new command/listener that already exists, the bot will ask
you if you want to replace the command/listener, useful for a quick bug fix
instead of deleting each time.

You can have multiple listeners for the same event but with a different
function name by using the instantcmd.utils.listener() decorator. It
doesn’t work like discord.ext.commands.Cog.listener [https://discordpy.readthedocs.io/en/latest/ext/commands/api.html#discord.ext.commands.Cog.listener], it only exists so
you can provide the name of the event you want to listen for.

Example

from instantcmd.utils import listener

@listener("on_message_without_command")
async def my_listener(message: discord.Message):
 # do your thing

return my_listener

This listener will be registered as my_listener and be suscribed to the
event on_message_without_command.

instantcommad delete

Syntax

[p]instantcommand [delete|del|remove] <name>

Description

Remove an instant command or a listener from what you registered before.

Arguments

	<name> The name of the command/listener.

instantcommand list

Syntax

[p]instantcommand list

Description

Lists the commands and listeners added with instantcmd.

instantcommand source

Syntax

[p]instantcommand source [command]

Description

Shows the source code of an instantcmd command or listener.

Note

This only works with InstantCommands’ commands and listeners.

Arguments

	[command] The command/listener name to get the source code from.

instantcommand env

Syntax

[p]instantcommand env

Description

This will allow you to add custom values to the dev environment.

Those values will be accessible with any dev command ([p]debug,
[p]eval, [p]repl), allowing you to make shortcuts to objects,
import more libraries by default or having fixed values and functions.

This group subcommand has itself 4 subcommands, similar to the base commands:

	[p]instantcommand env add: Add a new env value

	[p]instantcommand env delete: Remove an env value

	[p]instantcommand env list: List all env values registered to Red

	[p]instantcommand env source: Show an env value’s source code

Use [p]instantcmd env add <name> to add a new value, then the bot will
prompt for the code of your value. You must return a callable taking
ctx [https://docs.discord.red/en/latest/framework_commands.html#redbot.core.commands.Context] as its sole parameter.

<name> will be the name given to that value.

Warning

You must have the dev mode enabled to use this. Make sure you’re
running Red with the --dev flag.

Once added, that value will stay available with your dev commands.

For more informations, see the
add_dev_env_value [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red.add_dev_env_value] method.

Examples

	[p]instantcmd env add me return lambda ctx: ctx.guild.me

	[p]instantcmd env add inspect import inspect
return lambda ctx: inspect

	[p]instantcmd env add conf

def get_conf(ctx):
 return ctx.bot.get_cog("MyCog").config

return get_conf

	[p]instantcmd env add smile

def smile(ctx):
 def make_smile(text):
 return "😃" + text + "😃"
 return make_smile

return smile

Frequently Asked Questions

Note

Your question is not in the list or you got an unexcpected issue?

You should join the Discord server [https://discord.gg/AVzjfpR] or
post an issue [https://github.com/retke/Laggrons-Dumb-Cogs/issues/new/choose]
on the repo.

It’s written in the help message that I can add a listener. How can I do so?

Instead of giving a Command [https://discordpy.readthedocs.io/en/latest/ext/commands/api.html#discord.ext.commands.Command] object, just
give a simple function (don’t put the command decorator) and make sure
its name is matching the lowercased Discord API listeners [https://discordapp.com/developers/docs/topics/gateway#commands-and-events].

Warning

Do not use the new @commands.Cog.listener decorator
introduced in Red 3.1. The bot uses bot.add_listener which
doesn’t need a decorator.

Added in 1.1: InstantCommands now has its own listener decorator. It is
optional and used for providing the event name.

My command was added but doesn’t respond when invoked.

If a command is not invoked, this is most likely due to missing arguments.
Please check that you only have the ctx
argument and no self argument.

Can I use Config in my command?

Yes you can. The Config module is already imported,
you just need to use it as in a cog.

Tip

Here’s an example

@commands.command(name="test")
async def my_command(ctx):
 config = Config.get_conf(cog_instance="InstantCommands", identifier=42)
 # use anything but 260 for the identifier
 # since it's the one used for the cog settings
 config.register_guild(**{
 "foo": None
 })

 await config.guild(ctx.guild).foo.set("bar")
 await ctx.send("Well done")

return my_command

How can limit a command for some users?

You can use the checks module, like in a normal cog.

Tip

Here’s an example

@commands.command()
@checks.admin_or_permissions(administrator=True)
async def command(ctx):
 # your code

return command

How can I import a module without problem?

You can import your modules outside the function as you wish.

Tip

Here’s an example

from redbot.core import modlog
import time

@commands.command()
async def command(ctx):
 # your code

return command

RoleInvite

Note

These docs refers to the version 2.0.0.
Make sure you’re under the good version by typing [p]cog update.

This is the guide for the roleinvite cog. Everything you need is here.

[p] is considered as your prefix.

Installation

To install the cog, first load the downloader cog, included
in core Red.:

[p]load downloader

Then you will need to install the Laggron’s Dumb Cogs repository:

[p]repo add Laggrons-Dumb-Cogs https://github.com/retke/Laggrons-Dumb-Cogs v3

Finally, you can install the cog:

[p]cog install Laggrons-Dumb-Cogs roleinvite

Warning

The cog is not loaded by default.
To load it, type this:

[p]load roleinvite

Usage

Before giving the commands list, I’d like to show you how the cog is working.

The cog works with what I call invite links. Each invite
link is linked to one or more roles. This mean that,
every time a new user join the server, if they used the invite A to
join the server, they will get the list of roles linked to the invite A.

You can link many roles to multiple invites, so you can imagine something
like “click here if you are an engineer, else click here if you’re
an architect”, and make roleinvite give the engineer or architect roles.

You can also link roles to default or main autorole.
If you link roles to the main autorole,
the new member will get these roles if they
joined with an unlinked invite. If you link roles
to the default autorole, new users will always get
these roles, whatever invite they used.

Here’s a schema for a better understanding:

[image: _images/RoleInvite.png]
Here’s the list of all commands of this cog.

inviteset

Syntax:

[p]roleinviteset

Description

This is the main command used for setting up the code.
It will be used for all other commands.

inviteset add

Syntax:

[p]roleinviteset add <invite|main|default> <role>

Description

Link a role to a Discord invite or a default autorole.

	If invite is specified (a discord invite link),
a new invite link will be created with the role you gave.

	If main is specified, the role will be linked to the main autorole.

	If default is given, the role will be linked to the default autorole.

You can link more roles by typing the command with the same argument.

Arguments

	<invite> The object to link the role to.

	If it is a Discord invite URL, the role will be linked to it.

	If it is main, the role will be linked to the main autorole
(role given if the invite used is not linked to any roles).

	If it is default, the role will be linked to the default autorole
(role always given, whatever invite the user used).

	<role> The role to be linked. Please give the exact role name
or the ID.

inviteset remove

Syntax:

[p]roleinviteset remove <invite|main|default> [role]

Description

Unlink a role from an autorole. If the role is not given, the entire autorole
will be removed.

Arguments

	<invite> The object that will be edited.

	If it is a Discord invite URL, the role will be unlinked from it.

	If it is main, the role will be unlinked from the main autorole.

	If it is default, the role will be unlinked from
the default autorole.

	[role] Optional. The role to be unlinked. Please give the
exact role name or the ID. If not given, the entire
autorole will be removed.

inviteset list

Syntax

[p]roleinviteset list

Description

List all of the existing autoroles on the guild, with their linked roles.

inviteset enable

Syntax

[p]roleinviteset enable

Description

Enable or disable the autorole system.

Note

If it was removed without your action, that means that the bot somehow
lost its permissions. Make sure it has the good permissions and enable it again.

Frequently Asked Question

Note

Your question is not in the list or you got an unexcpected issue?

You should join the Discord server [https://discord.gg/GET4DVk] or
post an issue [https://github.com/retke/Laggrons-Dumb-Cogs/issues/new/choose]
on the repo.

Can I make it so the bot adds x roles if the invite used is unknown?

Yes, by using the main value instead of using a discord invite
when creating a new invite link. See roleinviteset add command’s
arguments for more informations.

Can I make it so the bot always adds x roles, regardless of the invite used?

Yes, by using the default value instead of using a discord invite
when creating a new invite link. See roleinviteset add command’s
arguments for more informations.

Can I make a custom welcome message for each invite link?

Not for now. I’m thinking about interacting with another package for that,
but that’ll require an API, which is rare with cog creators, and creating
my own welcomer system is a lot of work.

This may be available in a future release.

The bot suddenly stopped adding roles to the new members

The bot will automatically turn off the autorole system if it loses the Manage
sever or the Add roles permissions, which are absolutely necessary for the cog.

If you added the permissions back, enable the autorole again with the command
enable.

Some roles are not added to the new members

This can happens if the role hierarchy is modified after the roles got linked.
Remember that a bot/member can only add roles that are below them in the role
hierarchy.

Modify the role hierarchy and make sure all necessary roles are below
the bot’s highest role. If it still doesn’t work, try to link the role again.

An invite link was removed without any action

Invite links will be deleted if the invite doesn’t exist anymore
(manual delete or invite expired).

Say

Note

These docs refers to the version 1.4.8.
Make sure you’re under the good version by typing [p]cog update.

This is the guide for the say cog. Everything you need is here.

[p] is considered as your prefix.

Installation

To install the cog, first load the downloader cog, included
in core Red.:

[p]load downloader

Then you will need to install the Laggron’s Dumb Cogs repository:

[p]repo add Laggrons-Dumb-Cogs https://github.com/retke/Laggrons-Dumb-Cogs v3

Finally, you can install the cog:

[p]cog install Laggrons-Dumb-Cogs say

Warning

The cog is not loaded by default.
To load it, type this:

[p]load say

Usage

Here’s the list of all commands of this cog.

say

Syntax

[p]say [channel] <text>

Description

Make the bot say <text> in the channel you want. If specified,
it is send in a different channel.

Tip

Examples

[p]say Hello it's me, Red bot!
[p]say #general Hello, it's still me but from a different channel!

Arguments

	[channel=ctx]: The channel where the bot will send a message.
Default to where you typed the command.

	<text>: The text that the bot will say in the channel.

	attachment: The file you want to make the bot send. This is optional.

saydelete

Syntax

[p][sayd|saydelete] [channel] <text>

Descripton

Exact same as say command, except it deletes your message.

Warning

The Manage message permission is needed for the bot to use this function.

interact

Syntax

[p]interact [channel]

Description

Starts a rift between the channel and your DMs. The messages you send to the bot in DM will make
him post your messages in the channel. It will also post every message send in that time lapse.

Note

Click on the ❌ reaction on the first message to cancel the interaction.

Arguments

	[channel=ctx]: The channel where you want to start the interaction. Default to where
you typed the command.

Tip

This can be used directly from DM. Then it will be cross-server.

Just make sure you give an ID as the channel. Giving the channel name can lead to a different server.
Get the channel ID by enabling the developer mode (under Appearance section in the Discord user parameters),
then right click on the channel and copy the ID.

Frequently Asked Questions

Note

Your question is not in the list or you got an unexcpected issue?

You should join the Discord server [https://discord.gg/GET4DVk] or
post an issue [https://github.com/retke/Laggrons-Dumb-Cogs/issues/new/choose]
on the repo.

Can I send messages in another channel than the one where I typed the command?

Yes, by giving the channel as the first argument, like that:

[p]say #my-channel Hello!
[p]say my-channel Hello!

You can also use the command in DM.
It is recommended to give the channel ID as argument, since there may be many
channels that has the same name in the bot servers.

[p]say 363031186504941578 Hello!

Tip

Get the ID by enabling the developer mode (User settings -> Appearance), then by right-clicking on the channel.

Can I make the bot upload links?

Yes, just attach a file to your message,
it will be reposted with the same content. You can also add or not a comment.

Can I make the bot delete my message?

Yes, there’s a command called sayd (for say delete) that
will delete your message before posting.

My bot is slow to delete messages

If your bot is slow, that is an issue with your discord connection. Try changing
the host machine.

Tip

You should use the interact command
that let you tell what the bot should say in DM, so users won’t see you typing.

I am not allowed to use the command

The command is only available for server owners and bot owner by default.
You can modify this by using the core permissions cog.

Tournaments

This is the guide for the tournaments cog. Everything you need is here.

[p] is considered as your prefix.

Tip

If you’re a french user, you should check the website of my public
Red instance : https://atos.laggron.red/, the documentation for
Tournaments is way more detailed towards end users.

Installation

To install the cog, first load the downloader cog, included
in core Red.:

[p]load downloader

Then you will need to install the Laggron’s Dumb Cogs repository:

[p]repo add Laggrons-Dumb-Cogs https://github.com/retke/Laggrons-Dumb-Cogs

Finally, you can install the cog:

[p]cog install Laggrons-Dumb-Cogs tournaments

Warning

The cog is not loaded by default.
To load it, type this:

[p]load tournaments

Usage

The tournaments cog provides advanced tools for organizing your
Challonge [https://challonge.com/]) tournaments on your Discord server!

From the beginning to the end of your tournament, members of your server will
be able to join and play in your tournaments without even creating a
Challonge account.

The cog supports the registration and check-in of the tournament, including
seeding with Braacket.

Then, once the game starts, just sit down and watch ~~the magic~~ the bot
manage everything:

	For each match, a channel will be created with the two players of this
match.

	They have their own place for discussing about the tournament, checking
the stage list, banning stages/characters…

	The bot checks activity in the channels. If one player doesn’t talk within
the first minutes, they will be disqualified.

	Once the players have done their match, they can set their score with a
command.

	Players can also forfeit a match, or disqualify themselves.

	As the tournament goes on, outdated channels will be deleted, and new ones
will be created for the upcoming matches, the bot is constantly
checking the bracket.

The T.O.s, short for Tournament Organizers, also have their set of tools:

	Being able to see all the channels and directly talk in one in case of a
problem makes their job way easier

	If a match takes too long, they will be warned in their channel to prevent
slowing down the bracket

	They can directly modify the bracket on Challonge (setting scores,
resetting a match), and the bot will handle the changes, warning players
if their match is cancelled or has to be replayed. A warning is also
sent in the T.O. channel.

	Players can call a T.O. for a lag test for example, and a message will
be sent in the defined T.O. channel

Add to all of this tools for streamers too!

	Streamers can add themselves to the tournament (not as a player) and
comment some matches

	They will choose the matches they want to cast, and also provide
informations to players (for example, the room code and ID for smash bros)

	If a match is launched but attached to a streamer, it will be paused until
it is their turn. They will then receive the informations set above.

	The streamer has access to the channels, so that they can also communicate
with the players.

This was tested with tournaments up to 256 players, and I can personally
confirm this makes the organizers’ job way easier.

Setting up the cog

There are multiple settings to configure before starting your tournament.

Most of these settings are optional, unless told.

First, set your Challonge credentials! This is specific to your server.

Use [p]challongeset username <your_challonge_username>, then
[p]challongeset api. Do not directly provide your token with the
command, the bot will ask for it in DM, with the instructions.

Warning

Your token must stay secret, as it gives access to your account.

Then you can set the following channels with [p]tset channels:

	announcements, where the bot announces registration, start and end of
the tournament.

	checkin, where members will have to check (includes announcement).
If this isn’t set, members will be able to check everywhere.

	queue, where the bot announces the started matches.

	register, where members will be able to register (includes a pinned
message with the count of participants updated in real time).
If this isn’t set, members will be able to register everywhere.

	ruleset, a channel given for the rules of the tournament.

	scores, where participants will use the [p]win command to set their
score. If this isn’t set, participants will be able to
use this command everywhere.

	stream, where sets going on stream will be announced.

	to, where the bot warns the T.O.s about important info (bracket
modifications, participants asking for help). Setting this is required.

Next step, the roles with [p]tset roles:

	participant, the role given to all participants when they register.
Setting this is required.

	player, the role pinged when the registrations are opened. If you set
up a registrations channel, it will be unlocked for that role.

	streamer, the role that gives access to the streamer commands.

	to, gives access to the T.O. commands. This does not include the
``[p]tset`` command.

Attention

The to role is available if your T.O.s aren’t
moderators in your server. If your T.O.s are moderators or
administrators, use the core commands [p]set addmodrole and
[p]set addadminrole instead, which will adapt the permissions of
the entire bot to your mods and admins.

Some additional settings you can set:

	[p]tset delay defines when a player is considered AFK and must be
disqualified. This only listens for their first message in their channel, once
someone spoke, they’re safe. Defaults to 10 minutes.

	[p]tset start_bo5 defines at what point you want to move from BO3
format to BO5.

	[p]tset warntime customize the warnings sent for match duration.

	[p]tset register defines when the registration should start and stop.
See details in the registrations section.

	[p]tset checkin defines when the check-in should start and stop.
See details in the registrations section.

	[p]tset autostopregister if registrations should be closed when filled.
See details in the registrations section.

	[p]tset twostageregister defines a second start for registrations.
See details in the registrations section.

	[p]tset ranking uses a Braacket ranking for seeding the participants.

	[p]tset stages/counters defines a list of legal stages or counters.

	[p]tset baninfo define a ban mode (ex: 2-4-1) given to the participants
in addition to a player picked for beginning the bans.

Registration and check-in phases

The cog handles registrations and check-in, automatic or manual.

Type [p]register start to start registrations. An announcement will be
sent, and the command [p]in will be available.

	If you configured a registrations channel, the bot will open that channel
to your game role and the [p]in command will be locked to the channel.
There is also a message pinned with the number of participants.

Then type [p]register stop to end this phase. You can resume it later.

It’s pretty much the same thing for check-in, but you have to keep some things
in mind:

	The check-in requires all registered participants to confirm their presence
by typing [p]in again.

	When ending the check-in, all unchecked participants will be removed.

	If you configured a closing date, the bot may send reminders, pinging
and/or DMing remaining members. This can be done manually with [p]checkin
call.

Automatic opening/closing

You can configure opening and closing dates for both, based on tournament’s
start date.

You have to calculate the number of minutes before the scheduled start time.

Here’s an example situation:

	Your tournament starts on Saturday at 3:00 PM

	You want registrations to start on Friday at 7:00 PM

	You need a check-in on Saturday betweeen 2:00 and 2:40 PM

	Registrations should end on Saturday at 2:45 PM

You will have to run the following commands:

	[p]tset register 20h 15m: opens 20 hours and closes 15
minutes before tournament’s start time.

	[p]tset checkin 1h 20m: opens 1 hour and closes 20
minutes before tournament’s start time.

Tip

If you’re unsure, the bot will give you the exact date and time
calculated for both phases when setting up a tournament, asking for
confirmation.

Even with this configured, you can still use the commands to manually start
and stop.

Close when complete

For large scale tournaments, you may not want to keep the registrations ongoing
forever with everyone spamming for a place.

You can make the bot automatically close registrations when the limit of
participants (defined on Challonge) is reached by enabling the setting with
[p]tset autostopregister.

Two-stage registrations

Once again useful for big tournaments that uses the previous setting, you can
give a second opening time for registrations.

The bot will try opening registrations if they’re closed, else nothing
happens.

Configure that second time with [p]tset twostageregister.

Let’s use our previous example. Registrations end very soon due to the
number of participants, but you want to have last-minute registrations for
the places left by check-in. So, as soon as the check-in ends, registrations
are re-opened. Then type this :

	[p]tset twostageregister 20m reopens 20 minutes before tournament
start.

The configured closing time is still applied.

Manage multiple configurations

You can decide to save multiple configurations for the same server, useful if
you need different roles, channels, delays or other settings for specific
games or rulesets.

You can do that with the [p]tset config group command.

Create a config with [p]tset config add "Your config", then you can edit
settings for that config with the --config or -c “flag” at the end
of your command.

Examples:

	[p]tset delay 20m --config "Super Smash Bros."

	[p]tset roles player League player --config LoL

	[p]tset channels ruleset #2v2-smash -c "Smash 2v2"

See the other commands under [p]tset config for managing them.

See those settings with [p]tset settings --config "Config name". If there
are settings not set, the bot will fall back to the default config.

Then, to use that config with your tournament, use [p]setup with the same
flag as usual.

Tip

If you use the exact name of the game for your config, it will be
automatically used when you add the tournament if the name on Challonge
matches.

All good! We went across all settings, you can check those with the
[p]tset settings command.

Add a tournament

You can then create a tournament on Challonge.

Make sure the format is correct (single/double elimination), game name set,
and start time configured.

Then you can run [p]setup with the link of your tournament. Check that
all informations are correct then confirm.

Start and manage the tournament

Once you consider everything is good (check the bracket online to make sure),
start the tournament with [p]start.

You may want to make sure participants are uploaded to the bracket with
[p]upload before (clears previous list and seeding).

Multiple things will occur: first the tournament will be marked as started on
Challonge, then the bot will send all the initial messages in the defined
channels, and finally, the matchs will be launched.

The beginning is pretty impressive, because a lot of channels will start being
created. If you host a 128 players tournament, except 64 new channels in new
categories.

First thing to note: if a player does not talk in their channel within the 10
first minutes after the channel creation, they will be disqualified (you can
customize or disable this delay with [p]tset delay). You are warned of this
in the T.O. channel.

If the bot somehow fails to create a channel, the match will be moved in DM
(the bot announces the set in DM, timers and AFK check are therefore disabled).

Players are able to use the [p]lag command, asking for a lag test. A
message will then be sent in the T.O. channel.

If a set takes too much time, the players will be warned first, then if it is
still not done, a message is sent in the T.O. channel (customizable with
[p]tset warntime).

You can edit things in the bracket yourself, such as setting a score or even
resetting a match. The bot should handle all changes, resulting in matches
being terminated (score set), relaunched (score reset) or even cancelled
(score reset with child matches ongoing). This will also be announced in the
T.O. channel.

The winner of a match will set their score with the [p]win command, inside
the scores channel if set.

Players can use at any time [p]ff for forfeiting a match (they can still
continue depending on the tournament mode, such as the usage of a loser
bracket), or [p]dq for completly disqualifying themselves.

T.O.s can disqualify players with [p]rm.

Tip

To re-enable a disqualified player (because of an AFK check, or the
[p]dq/[p]rm commands), do this directly on the bracket.

On Challonge, go to the participants tab, and click on the “Reactivate”
button.

If you need to restart the tournament, use the [p]resetbracket command.
Channels will be deleted, and the tournament will fall back to its previous
state. You can then either start again with [p]start or just remove it
with [p]reset.

Manage streams

The cog comes with streaming support, aka managing a stream queue for streamers
who want to share and comment a match. The [p]stream command is accessible
to anyone, displaying the links of the current streamers. However, the sub
commands are only accessible to mods, T.O.s and streamers (role defined with
[p]tset roles streamer).

Here are the steps for adding a streamer to the tournament (only accessible
once the tournament has started):

	Initialize your stream with [p]stream init <link>, where <link> is
the URL of your Twitch channel.

	(Optional) Smash Bros. Ultimate streamers can setup the info of their room
(ID + code) that will be shared to the players once it is their turn with
[p]stream set <id> <code>.

	Add matches to your stream queue with [p]stream add. You can add sets
that will start in the future, or even sets that already started (the bot
will ping them, either for telling them to go on stream or to stop playing
and wait for their turn). You can add multiple sets at once. Example for
scheduling the top 4 of a 128 players tournament: [p]stream add 251 252
253 254 255 (the number of the sets can be found on Challonge).

	Remove scheduled matches with [p]stream remove followed by the sets.
You can clear your queue with [p]stream remove all.

	See the infos about your stream (such as the queue) with [p]stream
info.

	Reorder your stream queue with the following commands:

	[p]stream swap <set1> <set2> for swapping the position of two sets
in your queue.

	[p]stream insert <set1> <set2> for inserting set 1 right before
set 2 in the queue.

	[p]stream reorder for giving the entire order. This will add or
remove sets if they’re different from the previous stream queue.

	End your stream with [p]stream end, cancelling your queue and sending
players back to the game.

You can type [p]stream list for seeing all streamers. Note that a set
going on stream will be announced in the channel defined with [p]tset
channels stream.

Tip

Any T.O. or streamer can edit anyone’s stream by providing their
channel as the first argument of the command. Examples:

	[p]stream add https://twitch.tv/el_laggron 254

	[p]stream info el_laggron

This allows you to setup a stream for someone yourself, then transferring
the ownership of this stream with [p]stream transfer, making things
easier for them.

Additional resources

Common Challonge error codes

The bot will usually provide an explaination for the most frequeunt error
codes from Challonge. Here’s a table in case of:

	Error

	Explaination

	401

	
	The credentials are invalid

	The user setup does not have access on that tournament

	404

	
	The URL given is invalid

	The tournament is hosted by a community (not supported by API)

	The tournament was deleted

	The tournament’s URL or host changed

	422

	Can mean multiple things…

	When uploading participants

	The limit was probably hit.
The bot could have registered too many
participants, or the limit changed on Challonge.

	When starting the tournament

	There are not enough participants on
Challonge. Did the upload fail?
Try [p]upload and try again.

	You enabled the check-in via Challonge.
Check members there or disable this.

	When closing the tournament (supressed)

	The tournament was already closed by someone manually

If there’s a case I didn’t mention, error means
“Unprocessable entity”, so you’re trying to do something
inconsistant for Challonge. Check directly what
could be wrong on the bracket.

	502

	A sadly very common error, meaning Challonge is
being unstable again. Just try again later.

Troubleshooting

Having a critical bug in the middle of your tournament can be very annoying,
so this cog provides you advanced tools to attempt a fix while the
tournament is running with the [p]tfix command.

Warning

Those commands are high-level, and not knowing what you do can
ruin your entire tournament, so please make sure to read the description
of each command with [p]help tfix <your command>.

First, the commands with the lowest risk level.

One thing to note, the bot fetches informations about the tournament only
during inital setup with [p]setup. If you changed things like the limit
of participants or the tournament’s name, use [p]tfix refresh.

Attention

The following things will not be updated with
[p]tfix refresh:

	The game of the tournament (settings are based on this)

	Custom URL (the bot will return 404 if you do this, so don’t try)

	The tournament’s start date and time. Since registration and check-in
opening and closing times are already calculated on this, redoing this
process would be too hard to implement, with the ton of additional
checks that comes with it.

If anything doesn’t work correctly, try [p]tfix reload first. This is the
command that does the most: save, delete all objects we have in memory, then
rebuild the objects from what’s saved on disk. Sounds like a lot, but this one
of the most stable functions since I kept spamming reloads when coding and
testing, so any issue with this was quickly fixed. However, if something wrong
happens, don’t panic, and use the next command.

[p]tfix restore can be used to attempt loading a tournament that is
saved on disk but not on the bot. If your bot suddenly tells you “There is
no tournament setup” (or the previous command failed), then you’re looking for
this. If there are more issues, check the details in the logs, or ask a bot
administrator to help you.

Before explaining the next commands, let me explain what is the background loop
task. This is a task launched when you start your tournament that runs every
15 seconds, and does the following things :

	Update the internal list of participants

	Update the internal list of matches

	Launch pending matches

	Check for AFK players (someone didn’t talk within the first 10 minutes in
their channel, configurable with [p]tset delay), and delete inactive
channels (score reported and no message sent for 5 minutes)

	Call streams

If too many errors occur in this task, it will be stopped, and you may not be
aware of this until you see that new matches stop being launched. You can
check the status of the task with [p]tinfo.

Suppose you want to edit a lot of things in the bracket yourself, and you don’t
want the bot to create 25 new channels and immediatly delete them, so you want
to pause this background task. Use [p]tfix pausetask and the bot won’t
start new matches or look for bracket changes anymore.

You can then either use [p]tfix runtaskonce to only refresh matches and
launch matches once to check, or use [p]tfix resumetask to fully resume
the task. You can also use this last command to restore a task that bugged.

Finally, the danger zone. Those commands will perform a hard reset and cannot
restore what you had, depending on what you chose.

During registration and check-in, you can use [p]tfix resetparticipants,
which will remove all participants from memory (not from the bracket if already
uploaded). If you want the bot to also remove the members’ participant role,
call [p]tfix resetparticipants yes, else everyone will keep their roles.

During the tournament, you can use [p]tfix resetmatches which removes all
matches and participants objects from memory. If the background task is still
running, the list of participants and matches will quickly be fetched back
from the bracket, re-creating fresh objects and new channels. Note that all
match channels existing when you run this command will be forgotten by the bot
and unusable. Like the command above, you can call [p]tfix resetmatches yes
to make the bot delete all channels.

At whatever phase of the tournament, you can use [p]tfix hardreset. See
this as the latest possible option, as this will simply delete all
internal objects, without trying anything else. It’s like a factory reset,
put the bot back to its initial state, regardless of the current state (does
not reset settings). There is no announcement, no DM, no channel
cleared/removed, the bot will just say “There is no tournament” on commands.
Channels and roles will still be in place, everything will just stop. No API
call is sent to the bracket, it will stay as it is.

Before considering this, you must be sure of the consequences. Try to look
into other options first, like [p]reset, [p]resetbracket or other
[p]tfix commands.

WarnSystem

Note

These docs refers to the version 1.4.0.
Make sure you’re under the good version by typing [p]cog update.

This is the guide for the warnsystem cog. Everything you need is here.

[p] is considered as your prefix.

Installation

To install the cog, first load the downloader cog, included
in core Red.:

[p]load downloader

Then you will need to install the Laggron’s Dumb Cogs repository:

[p]repo add Laggrons-Dumb-Cogs https://github.com/retke/Laggrons-Dumb-Cogs v3

Finally, you can install the cog:

[p]cog install Laggrons-Dumb-Cogs warnsystem

Warning

The cog is not loaded by default.
To load it, type this:

[p]load warnsystem

Usage

This cog is an alternative to the Mod core cog. It provides a moderation system
similar to Dyno. Actions are stored and can be accessed at any time. This is
the rewrite of the BetterMod cog for Red V3. Here is a quick start guide.

	Define a modlog channel

You can define a channel where all actions will be logged, either with the
[p]warnset channel command or with the [p]modlogset modlog command,
from Modlog cog.

	Set your moderators

All members with the moderator role will be able to use the [p]warn
command. You can set the moderator and administrator role with the [p]set
modrole and [p]set adminrole commands.

	(Optional) Set up the mute role

The mute from WarnSystem uses roles instead of separate channel
permissions. Type [p]warnset mute to create the mute role. It will be
placed below the bot’s top role and all channel permissions will be edited
so those who have this role cannot send messages and add reactions.

You can edit this role as you want, as long as it is below the bot’s top
role so it can assign it to users.

	Warn members

Once this is setup, moderators and administartors will be able to use the
[p]warn command, with 5 different levels:

	Simple warning

	Server mute (can be temporary)

	Kick

	Softban (ban then quickly unban the member, to clean their messages)

	Ban (can be temporary, and also ban members not on the server)

Each warn will send a DM to the warned member, a log in the modlog channel,
then the bot will take actions. You can check, edit and delete a member’s
warnings with the [p]warnings command.

You now have the basic setup ready! If you want, you can setup more features
for your bot:

	Substitutions: If you own a huge server, you might repeat yourself in
the reasons of your warnings. You can setup substitutions, so you can
include small words that will be replaced by a defined sentence. For
example, if you set “Advertising for a Discord server.” as a substitution
of ad, type this: [p]warn 3 @El Laggron#0260 [ad] This is your last
warning! and the reason of the warn will be “Advertising for a Discord
Server. This is your last warning!”. Get started with the [p]warnset
substitutions group command.

	Role removal: Discord permissions can be a pain in the ass, and mute
with role can be a problem. The most common situation is where a member
has a role that grants them write access in a channel and the mute role
cannot overwrite that. This is why this option exists, enable it with
[p]warnset removeroles and all roles will be removed and reassigned
once the mute ends or if the warning is deleted.

	Auto channel update: When you create the mute role, all existing text
channels are configured to make it efficient. If you enable this setting
with [p]warnset autoupdate, when you create a new text channel, it
will automatically be updated for the mute role.

	Reinvite: Enabling this feature will try to send a DM to all unbanned
members after their temporary ban, including an invite for yout server.
Note that the bot must share a server in commom with the unbanned member.

	Hierarchy: To make sure your moderators doesn’t abuse with their
permissions, you can enable hierarchy protection. This means that the bot
will block a moderator trying to warn a member higher than them in the role
hierarchy, like with the manual Discord actions.

	Multiple modlogs: If you want to send all warnings, mutes, kicks and
softban in a private channel, but you want to make the ban publics, you
can set a different channel for a specific warning level. Type [p]warnset
channel #your-channel 5 to make all bans goes into that channel. Just
change the number for the warn level.

	Hide responsible moderator: Sometimes, moderators wants to keep their
action anonymous to the warned member. If you want to stay transparent,
type [p]warnset showmod to show the author of a warn to the warned
member in DM.

	Set number of days of messages to delete: A Discord ban allows to set
a specific number of days of messages sent by the banned member to delete,
up to 7 days. By default, softbans will delete 7 days of messages and bans
won’t delete any. You can customize this with the [p]warnset bandays
command.

	Custom embed description: If you want to customize your modlog and set
your own sentence for logs sent to the modlog channel and to the warned
member, you can do this with the [p]warnset description command.

	Custom embed thumbnail: Don’t like the default images in the top right
hand corner of the embed? You can set your own image for each warn level
with [p]warnset thumbnail, common to both modlog and DM.

	Custom embed color: Too much customization with embeds. Customize the
color of the left vertical bar in the embed for each warn level. Common to
both modlog and DM too. Use the [p]warnset color command.

	Convert your old BetterMod logs: If you’re migrating to V3 and you were
using the BetterMod cog on your V2 bot, you can migrate the logs for V3!
Get the file of your modlog history (located at
/data/bettermod/history/<your server ID>.json) and use the [p]warnset
convert command.

	Masswarn: Ready to ban your entire server? The masswarn allows you to
warn multiple members at once. It searches through the whole member list
based on one or more conditions, then perform an action. For example, you
can select everyone with x role, without y permission, and who joined after
the given date. Look at the docs for that command to know more about it,
it can be hard to use it at first.

Commands

Here is a list of all commands from this cog.

warn

Syntax

[p]warn

Description

The base command used to warn members. You must either have the moderator role,
administrator role, have the administrator permission or be the server owner.

Warning

You must setup a modlog channel before using warn, either with
the core Modlog cog ([p]modlogset modlog) or with WarnSystem
([p]warnset channel).

Each warning will be logged to the modlog channel, and a DM will be sent to the
warned member. If the bot cannot send a message to that member (the member may
have blocked the bot, disabled DMs from this server, or doesn’t share a server
in common with the bot), it will be showed in the modlog.

You can check the warnings set on a specific member later with the
[p]warnings command. This command also allows to edit the reason of the
warning, or delete them.

Tip

The warn level defaults to 1 if you omit it.

warn 1

Syntax

[p]warn <1|simple> <member> [reason]

Description

Sets a simple warning on a member. This does not take any action, but the warn
will be showed to the member and stored.

Example

	[p]warn 1 @El Laggron#0260 Rude behaviour.

This warns El Laggron for the following reason: Rude behaviour.

Arguments

	<member>: The member to warn. Can either be a mention, the name + tag,
the name, the nickname or an ID.

	[reason]: The reason of the warn. Omitting this will set the reason as
“No reason set.”.

warn 2

Syntax

[p]warn <2|mute> <member> [duration] [reason]

Description

Mutes the member with a role on the server.

Warning

You must have the mute role setup. Use the [p]warnset mute
command to create/assign the role.

The member will get the mute role for the specified time. You can edit this
role as you like to allow them some channels for example. Removing their role
manually will cancel the mute without problems, but the warn will still exist.
Removing the warn with the [p]warnings command will also remove the role
if needed.

You can set a duration to the mute with the first word of the reason, which
should be a number followed by the unit. Examples:

	20s = 20secs = 20seconds: 20 seconds

	5m = 5minutes = 5min: 5 minutes

	2h = 2hours = 2hrs: 2 hours

	1d = 1day: one day

	7d = 7days: a week

You can also stack them like this:

	5m30s: 5 minutes and 30 seconds

	1d12h: One day and a half

	1h45m: 1 hours and 45 minutes

Examples

	[p]warn 2 @El Laggron#0260 Hacked account.

This will mute El Laggron for an undefined duration.

	[p]warn 2 @El Laggron#0260 2h Spam for exp.

This will mute El Laggron for two hours, then remove his role.

Arguments

	<member>: The member to warn. Can either be a mention, the name + tag,
the name, the nickname or an ID.

	[reason]: The reason of the warn. Omitting this will set the reason as
“No reason set.”.

warn 3

Syntax

[p]warn <3|kick> <member> [reason]

Description

Kicks the member from the server.

Example

	[p]warn 3 @El Laggron#0260 Selfbot.

This will just kick the member.

Arguments

	<member>: The member to warn. Can either be a mention, the name + tag,
the name, the nickname or an ID.

	[reason]: The reason of the warn. Omitting this will set the reason as
“No reason set.”.

warn 4

Syntax

[p]warn <4|softban> <member> [reason]

Description

Bans the member from the server, then unbans them, to mass delete their messages.
This can be considered as a kick with a massive cleanup of messages.

The bot will delete 7 days of messages by default, this can be changed with the
[p]warnset bandays command.

Example

	[p]warn 4 @El Laggron#0260 NSFW in inappropriate channels.

This will kick El Laggron and delete all of his messages sent in the last 7
days.

Arguments

	<member>: The member to warn. Can either be a mention, the name + tag,
the name, the nickname or an ID.

	[reason]: The reason of the warn. Omitting this will set the reason as
“No reason set.”.

warn 5

Syntax

[p]warn <5|ban> <member> [duration] [reason]

Description

Bans the member from the server, can be a temporary ban. It can also be a
hackban (banning a member which is not on the server).

If you want to perform a hackban, get the ID of the user and provide it for
the <member> argument. You can get a user ID by enabling the developer mode
(User Settings > Appearance > Developer mode), then right-clicking on that user
and clicking on “Copy ID”.

The bot won’t delete any message by default, this can be changed with the
[p]warnset bandays command.

You can set a duration to the mute with the first word of the reason, which
should be a number followed by the unit. Examples:

	20s = 20secs = 20seconds: 20 seconds

	5m = 5minutes = 5min: 5 minutes

	2h = 2hours = 2hrs: 2 hours

	1d = 1day: one day

	7d = 7days: a week

You can also stack them like this:

	5m30s: 5 minutes and 30 seconds

	1d12h: One day and a half

	1h45m: 1 hours and 45 minutes

Attention

Deleting the warning through the [p]warnings command does
not remove the ban.

Examples

	[p]warn 5 @El Laggron#0260 Harassing

Bans El Laggron forever from the server.

	[p]warn 5 @El Laggron#0260 7d Doesn't respect the previous warnings

Bans El Laggron for a week from the server, then unbans him.

	[p]warn 5 348415857728159745 Advertising for a weird dating website,
then leaves.

Bans El Laggron forever while he is not on the server.

Arguments

	<member>: The member to warn. Can either be a mention, the name + tag,
the name, the nickname or an ID.

	[reason]: The reason of the warn. Omitting this will set the reason as
“No reason set.”.

masswarn

Syntax

[p]masswarn

Description

Warn multiple members at once. This advanced command allows you to filter
members to warn with UNIX-like arguments, called flags.

Each “flag” is one more condition for the search. For example, [p]masswarn
--has-role "New Member" --joined-after "16 june 2019" will filter the
member who have the “New Member” role and who joined after the 16th of
June of 2019. The search begins with all members on the server, then each
condition is checked on each member to know if it should be kept in the
masswarn or not.

You also have to tell to the bot what to do. Unlike the warn command where it
takes actions, sends a message to the member and one in the modlog, you can
decide what the bot should do, to make it faster or prevent spam.

	--take-actions will perform the action related to the warn (add the
mute role, kick or ban a member…)

	--send-modlog will send a message in the modlog

	--send-dm will send a DM to the member

Warning

You have to put at least one of those flags.

You can then put the optional --reason flag to set the reason of the
warning. Be sure to put it enclosed in quotes. If you’re performing a level 2
or 5 warning, you can also use the --time flag to define the duration of
the mute/ban if you want to make it temporary, the format of the time is the
same as for the simple warnings.

Some flags needs an input with them, it can be a date, a set of
roles, a regex expression… We will explain how input works for those
flags. Note that if you need to put multiple words, you’ll have to use quotes.

Date imput

For the flags --joined-before and --joined-after, you will need to
put a specific date. A lot of formats are supported, here are some
examples:

	27 june 2018

	13/2/18

	august 2019 (will be the first day of the month)

	2017 (will be the first day of the year)

	monday (will be the first monday of the month)

	23 jun 12:00 (you can also specify the hour)

	Wednesday, 19th of September of 2018 (if you really want to lose
time, that works too)

Role input

The flags --has-role, --has-any-role, --has-all-roles,
--has-none-roles, --above and --below requires you to type one
or more roles. You can provide the role ID or the role name, in quotes if
there are spaces. Here are some examples:

	--has-role Moderator

	--has-any-role Member Staff "Nitro Booster" 168091848718417920

	--has-none-roles "Reddit Moderator"

	--below Administrators

Permission input

The flags --has-perm, --has-any-perm, --has-all-perms and
--has-none-perms requires discord permissions, formatted as provided
by the API. Here are the names you have to use:

General permissions:
- administrator
- view_audit_log
- manage_guild
- manage_roles
- manage_channels
- kick_members
- ban_members
- create_instant_invite
- change_nickname
- manage_nicknames
- manage_emojis
- manage_webhooks

Text permissions:
- read_messages
- read_message_history
- send_messages
- send_tts_messages
- attach_files
- embed_links
- external_emojis
- mention_everyone
- manage_messages
- add_reactions

Voice permissions:
- connect
- speak
- stream
- use_voice_activation
- priority_speaker
- move_members
- mute_members
- deafen_members

Here are some examples:

	--has-perm send_messages

	--has-any-perm manage_messages manage_channels manage_roles

	--has-none-perms administrator manage_guild

	--has-all-perms send_messages connect

Member input

The flags --select, --hackban-select and --exclude requires you to
pass multiple members, either with their name, their nickname, their name+tag,
their ID or by mentionning them (only IDs works for --hackban-select).
Here are some examples:

	--select "El Laggron#0260" 133801473317404673 Twentysix

	--exclude aikaterna#1393 "Kowlin, That silver Yuumi main"

	--hackban-select 301368585714925568 336966738103107584

Regual expressions input (regex)

The flags --name, --nickname and --display-name requires
regular expressions. Not going to explain how those work here, you can
learn how to use those on Python’s guide [https://docs.python.org/3/library/re.html] and test your expressions
with regex101 [https://regex101.com/]. Just keep in mind you have to
keep your expression enclosed in quotes.

Now it’s time to list all of the flags.

	Actions

	--take-action take-actions Defines if the bot should take an
action (add the mute role, kick/ban the member)

	--send-dm Defines if the bot should send a DM to the warned
members

	--send-modlog Defines if the bot should send a message in the
modlog channel

	confirm If passed, the bot won’t ask for a confirmation and just
directly process the masswarn silently. This can be useful combined
with a scheduler.

	--reason <text> The reason of the masswarn, substitutions works

	--time --length The duration of the warn, for mutes and bans

	Member search

	--select [member, ...] Select multiple members to include in the
masswarn, they are not affected by your search

	--hackban-select [member, ...] Select multiple users outside of
the server for a hackban. You have to provide valid user IDs and the
warning level must be 5.

	--exclude [member, ...] Select multiple members to exclude from
the search, they won’t be warned

	--everyone Includes everyone in the server, your search will
therefore not be committed, the --exclude flag will also not be
used

	--name <regex> Only includes the members which names validates to
the given expression

	--nickname <regex> Only includes the members which nicknames
validates to the given expression, this excludes members without
nicknames

	--display-name <regex> Only includes the members which nicknames,
or name if nickname isn’t set, validates to the given expression

	--only-humans Excludes all bots from the search

	--only-bots Only includes bots in the search

	--joined-before <date> Members who joined after the given date
will be excluded from the masswarn

	--joined-after <date> Members who joined before the given date
will be excluded from the masswarn

	--last-njoins <number> Includes the last x members of the server,
this is useful in case of a raid

	--first-njoins <number> Includes the first x members of the
server, if you want to purge the elders you monster

	Permissions search

	--has-perm <permission> Includes the members with the given
permission, this is based on roles, not channel permissions

	--has-any-perm [permission, ...] Includes the members who have any
of the given permissions

	--has-all-perms [permission, ...] Includes the members who have
all of the given permissions

	--has-none-perms [permission, ...] Include the members who have
none of the given permissions

	--has-perm-int <number> Includes the members whose permission
integer matches what you gave, you can calculate your permission
integer on the permissions calculator [https://discordapi.com/permissions.html]

	Role search

	--has-role <role> Includes the members who have the given role

	--has-any-role [role, ...] Includes the members who have any of
the given roles

	--has-all-roles [role, ...] Includes the members who have all of
the given roles

	--has-none-roles [role, ...] Include the members who have none of
the given roles

	--has-no-role Excludes the members with any custom role

	--has-exactly-nroles <number> Includes the members who have the
number of roles given, this doesn’t count the @everyone role

	--has-more-than-nroles Includes the members who have more roles
than the number given, this doesn’t count the @everyone role

	--has-less-than-nroles Includes the members who have less roles
than the number given, this doesn’t count the @everyone role

	--above <role> Includes the members whose top role is above the
given role

	--below <role> Includes the members whose top role is below the
given role

Enough info, time for explained examples.

	[p]masswarn 2 --take-actions --send-dm --send-modlog --reason "Potential
raid" --time 24h --joined-after "12 august 14:30" --has-no-roles
--only-humans This will mute for a day all members who joined after the
12th of august at 2:30 p.m. without roles and excluding bots. Everyone will
receive a message and this will be logged in the modlog.

	[p]masswarn 5 --take-actions --send-dm --reason "toxic potatoes"
--has-role Starbucks Just bans everyone with the role “Starbucks”

wsunmute

Syntax

[p]wsunmute <member>

Description

Unmutes a member muted with WarnSystem.

This will remove the mute role, grant
his roles back if they were removed by the mute (see [p]warnset
removeroles) and, if the mute was temporary, cancel the timer to prevent
unwanted roles operations.

This operation is not logged and doesn’t take any reason.

Note

wsunmute = WarnSystem unmute. Allows the core mod cog to be loaded,
feel free to add an alias.

Arguments

	<member>: The member you’re trying to unmute.

wsunban

Syntax

[p]wsunban <member>

Description

Unbans a member from the server.

This will cancel any timer if this was a
temporary ban to prevent unwanted unbans.

This operation is not logged and doesn’t take any reason.

Note

wsunban = WarnSystem unban. Allows the core mod cog to be loaded,
feel free to add an alias.

Arguments

	<member>: The member you’re trying to unmute.

automod

Syntax

[p]automod

Description

WarnSystem’s automod configuration. See subcommands.

Note

This respects Red’s automod immune system. If you want to immune
a role or a member from all of WarnSystem’s automated actions, use
[p]autoimmune (from Core cog).

automod enable

Syntax

[p]automod enable [confirm]

Description

Enable or disable WarnSystem’s automod. This is disabled by default.

Attention

Disabling this will disable all automod systems, even if they’re
enabled.

Arguments

	[enable]: The new status to set. If omitted, the bot will display the
current setting and show how to reverse it.

automod warn

Syntax

[p]automod warn
[p]automod warn add
[p]automod warn delete <index>
[p]automod warn list
[p]automod warn show <index>

Description

Configures the automod based on member’s modlog. This allows automatic actions
based on previous given warnings.

For example, you can make it so if someone receives 3 level 1 warnings within a
week, they will automatically get a level 3 (kick) warning with the reason you
defined. A lot of options are possible.

Use [p]automod warn add to add a new rule. This will open an interactive
menu that asks for the following informations:

	The limit of warns (how many warnings should trigger the automod?)

	The level of the warning that will be given once the rule is triggered.

	The reason of the warning

	The optional time limit (if member gets x warnings within duration)

	If warn level is 2 or 5, the optional duration of the warning
(temp mute or ban)

	The level of the warning the bot should count (for example, only count
level 1 warnings). Omit to count all possible warnings.

	If the bot should only count warnings given by the automod. If this is
enabled, warnings given by moderators will not be counted.

Your rule will be saved in a list. View this list with [p]automod warn list
to get its index. With the index, you can view the info with [p]automod warn
show or delete it with [p]automod warn delete.

automod regex

Syntax

[p]automod regex
[p]automod regex add <name> <regex> <level> [time] <reason>
[p]automod regex delete <name>
[p]automod regex list
[p]automod regex show <name>

Description

Create and manage automod rules that will warn people if they send a message
that matches your Regex expression. This can be used for example to warn people
automatically if they send a Discord invite, or any link.

Note

Regex, short for regular expression, is a way to make advanced rules
for checking if a phrase matches what you need, with multiple possible
conditions.

You can use regex101 [https://regex101.com/] to test your expressions
and have detailed explainations. Make sure to use Python mode.

If you don’t know about Regex, I recommand you to check Trusty’s short
introduction to Regex for ReTrigger cog [https://github.com/TrustyJAID/Trusty-cogs/tree/master/retrigger#how-to-use-retrigger].
For a complete guide, check Python’s documentation for Regex [https://docs.python.org/3/library/re.html#regular-expression-syntax]
and keep in mind regex101 [https://regex101.com/] is great for testing.

Use [p]automod regex add to create a new rule with the following arguments:

	<name>: The name of your rule.

	<regex>: Your regular expression. Enclose in quotes if there are spaces
inside.

	<level>: The level of the warning the bot should take.

	[time]: If level is 2 or 5, optional duration for your mute or ban.

	<reason>: The reason of the warning. You can use the following keywords
inside your reason:

	{member}: the warned member in the format “name#0000”. Other
formats are possible:

	{member.mention}

	{member.name}

	{member.id}

	{channel}: the channel where the message was send in the format
“channel-name”. Other possible formats:

	{channel.mention}

	{channel.category}

	{channel.id}

	{guild}: the current server, if needed, in the format “server
name”. Other possible formats:

	{guild.id}

Click for the list of all possible formats for Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member],
Channel and discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild].

Example: [p]automod regex add discord_invite
"(?i)(discord\.gg|discordapp\.com\/invite|discord\.me)\/(\S+)"
1 Discord invite sent in {channel.mention}.

You can then view the informations of that rule with [p]automod regex show,
delete it with [p]automod regex delete and list other rules with
[p]automod regex list.

automod antispam

Syntax

[p]automod antispam
[p]automod antispam delay <delay>
[p]automod antispam enable [enable]
[p]automod antispam info
[p]automod antispam threshold <max_messages> <delay>
[p]automod antispam warn <level> [duration] <reason>

Description

Antispam system management. This will warn members if they send messages too
quickly.

Use [p]automod antispam enable to enable the antispam system. You can
enable and disable it without affecting other automod functions. You still
need to have automod enabled.

You will then have the antispam enabled with default settings:

	Maximum of 5 messages within 5 seconds. Modify with [p]automod antispam
threshold.

	One reminder within a minute before warn. Modify with [p]automod antispam
delay.

	Level 1 warn applied for the reason “Sending messages too fast.”. Modify
with [p]automod antispam warn.

You can check these info with [p]automod antispam info.

A bit more details for the “reminder”: if the antispam is triggered, the bot
will send a text warning directly in the channel, mentionning the member
to warn him. If the antispam is triggered a second time within a minute, then
the bot will take actions, as set with [p]automod antispam warn.

This is a way to make people aware of the antispam, most of the members will
quickly correct their behaviour and avoid a spam of warnings. Of course you can
increase or decrease this period with [p]automod antispam delay (in
seconds). You can completly disable this and immediatly take actions by
settings a delay of 0.

warnset

Syntax

[p]warnset

Description

Base command used for all WarnSystem settings.

warnset settings

Syntax

[p]warnset settings

Description

Lists all settings defined on the current server.

warnset autoupdate

Syntax

[p]warnset autoupdate [enable]

Description

Enables or disables the automatic update of new channels for the mute role. If
you enable this, every time a new text channel is created, the bot will update
its permissions to deny to the mute role the ability to send messages and add
reactions.

This is disabled by default.

Arguments

	[enable]: The new status to set. If omitted, the bot will display the
current setting and show how to reverse it.

warnset bandays

Syntax

[p]warnset bandays <ban_type> <days>

Descritpion

Defines how many days of messages should be deleted when a member is banned or
softbanned. The number of days can be between 1 and 7. You can set 0 to disable
message deletion for the bans, not for softbans.

Arguments

	<ban_type>: The type of ban that should be edited. Either ban or
softban.

	<days>: The number of days of messages that should be deleted. Between
1 and 7 only. 0 to disable for bans.

warnset channel

Syntax

[p]warnset channel <channel> [level]

Description

Defines the modlog channel for the cog. This is a required step before warning
members.

Note

You can also use the core Red modlog by loading the modlogs cog, then
using the [p]modlogset modlog command.

If you want to set a different modlog for a specific warning level (like,
sending ban warnings in a different channel), you can provide the warning level
after your channel to set it as the modlog channel for this specific warning
level.

Arguments

	<channel>: The text channel where the modlog will be set.

	[level]: The warning level associated to the channel. If this is not
provided, the channel will be set as the default modlog channel.

warnset color

Syntax

[p]warnset color <level> <color>

Description

This will edit the color of the embeds’ left bar for each warning level. The
color is the same for the modlog and the member.

[image: _images/embed-left-bar.png]
Arguments

	<level>: The level of the warning you want to edit, this must be a
number between 1 and 5.

	<color>: The new color you want to set. It can be an hexadecimal value
(#FFFFFF = white) or the english name of a color, such as dark-blue,
red or even blurple. Full list [https://discordpy.readthedocs.io/en/latest/api.html#discord.Colour]

warnset convert

Syntax

[p]warnset convert <path>

Description

Converts a V2 BetterMod history file to migrate its logs to WarnSystem V3.

The history file is located at the following path:
Red-DiscordBot/data/bettermod/history/<server ID>.json. You can grab your
server ID with the [p]serverinfo command.

You can decide to append or overwrite the logs to the current logs through
the guided configuration. Append will get the logs and add them, while
overwrite will reset the current logs and replace them with the migrated ones.

Example

	[p]warnset convert /home/laggron/Desktop/Red-DiscordBot/data/bettermod/history/363008468602454017.json

Arguments

	<path>: The path to your history file.

warnset description

Syntax

[p]warnset description <level> <destination> <description>

Description

Edits the description of an embed for the modlog or the warned member. The
default description for the modlog is “A member got a level (x) warning.”, for
the member, it is “The moderation team set you a level (x) warning.”.

You can use the following keys in your custom description:

	{invite}: Generates an invite for the server and place it.

	{member}: The warned member. You can use attributes such as
{member.name}, {member.id}, {member.nick}…

	{mod}: The responsible mod of a warn. You can use the same attributes
as for {member}.

	{duration}: The duration of a mute/ban if set.

	{time}: The current date and time.

Arguments

	<level>: The level of the warn to edit.

	<destination>: Either user for the warned member or modlog for
the modlog.

	<description>: The new description.

warnset detectmanual

Syntax

[p]warnset detectmanual [enable]

Description

Defines if you want the bot to automatically log manual bans taken on the
server. This will send a message in the modlog and create a case assigned to
the banned member with the reason set via Discord. However, the bot will not be
able to send a DM.

This is disabled by default.

Arguments

	[enable]: The new status to set. If omitted, the bot will display the
current setting and show how to reverse it.

warnset hierarchy

Syntax

[p]warnset hierarchy [enable]

Description

Enables or disables the hierarchy respect. If you enable this, the bot will
make sure the moderator is allowed to warn someone with the Discord hierarchy
rules (cannot warn someone if the warned member has a role equal or higher than
the moderator’s top role).

This is disabled by default.

Arguments

	[enable]: The new status to set. If omitted, the bot will display the
current setting and show how to reverse it.

warnset mute

Syntax

[p]warnset mute [role]

Description

Creates a role used for muting the members, or set an existing one as the mute
role. If you don’t provide any role, the bot will create one below its top
role, then deny the “Send messages” and “Add reactions” on all text channels.
Editing all channels takes a long time, depending on the number of text
channels you have on the server, so don’t worry if nothing happens for about
30 seconds, it’s doing the setup for the mute.

You can also provide an existing role to set it as the new mute role.
Permissions won’t be modified in any channel in that case, so make sure you
have the right permissions setup for that role.

Tip

You can use [p]warnset autoupdate to automatically update new
channels created on your server, to make sure the mute role stays efficient
everywhere.

Tip

The [p]warnset refreshmuterole will iterate all channels and make
sure the channels have the correct permissions set for the mute role (“send
messages”, “add reactions” and “speak” permissions denied).

Arguments

	[role]: The exact name of an existing role to set it as the mute role.
If this is omitted, a new role will be created.

warnset refreshmuterole

Syntax

[p]warnset refreshmuterole

Description

Check if the mute role’s permissions match your server channels. If permissions
are wrong somewhere, they will be adjusted. The bot checks for the following
permissions:

	Send messages denied

	Add reactions denied

	Speak denied

This checks text and voice channels, and categories too. Once the bot finished,
the number of updated channels will be shown.

This is useful if you lost track of the permissions, or didn’t enable the
autoupdate function (see [p]warnset autoupdate).

warnset reinvite

Syntax

[p]warnset reinvite [enable]

Description

Enables or disables the DM sent to unbanned members. If you enable this, make
sure the bot has the permission to create new invites.

This is enabled by default.

Arguments

	[enable]: The new status to set. If omitted, the bot will display the
current setting and show how to reverse it.

warnset removeroles

Syntax

[p]warnset removeroles [enable]

Description

Defines if the bot should remove all roles from a member when they get muted
(warn 2). This can be useful because, in some cases, some channels can still
be accessible to a muted member (for example, when they have a role that grants
them access to a private channel).

This behaviour is due to Discord’s permissions system ; the mute role is denied
from sending messages and adding reactions in all text channels, but if another
role forces the permission (green tick), it will overwrite the mute’s
permissions, even if the role is higher in the hierarchy.

Attention

This method exists to prevent roles from overwriting the mute
role’s restrictions, this doesn’t apply on member permissions. If a
member has a forced permission set in the channel, it will overwrite the
mute and the bot won’t try to fix it.

If the mute ends (timed mute) or if you delete the warning, the roles of the
member will be added back. Make sure to set a timed mute if you want the bot
to add roles back without removing the warning, since removing the mute role
manually will not grant the roles back.

Tip

To have good permissions on your server, prevent as much as possible
forcing a permission in a channel (green tick) and leave it on grey, try to
use role permissions instead.

This setting is enabled by default.

Arguments

	[enable]: The new status to set. If omitted, the bot will display the
current setting and show how to reverse it.

warnset showmod

Syntax

[p]warnset showmod [enable]

Description

Toggles if the bot should show or hide the responsible moderator of a warn to
the warned member in DM.

This is disabled by default.

Arguments

	[enable]: The new status to set. If omitted, the bot will display the
current setting and show how to reverse it.

warnset substitutions

Syntax

[p]warnset substitutions add <name> <text>
[p]warnset substitutions [delete|del] <name>
[p]warnset substitutions list

Description

Group command for managing the substitutions. A substitution is used to replace
a small word in brackets by a long sentence in your warn reason, to avoid
repetitions when taking actions.

Use [p]warnset substitutions add <name> <text> to create a substitution,
where <name> is the keyword and <text> is what will replace the
keyword.

Use [p]warnset delete to delete a substitution and [p]warnset list to
list them.

Example

[p]warnset substitutions add lastwarn This is your last warning!

This creates a substitution with the keyword lastwarn.

[p]warn 3 @El Laggron#0260 Racist insults. [lastwarn]

The reason of this warn will be: Racist insults. This is your last warning!

warnset thumbnail

Syntax

[p]warnset thumbnail <level> [url]

Description

Edits the small image located at the top right hand corner on the embeds sent
in the modlog and to the members.

[image: _images/embed-thumbnail.png]
You can also completly remove those images by omitting the URL argument.

If you want to restore the default images, here are the original URLs:

	warn 1 [https://i.imgur.com/Bl62rGd.png]

	warn 2 [https://i.imgur.com/cVtzp1M.png]

	warn 3 [https://i.imgur.com/uhrYzyt.png]

	warn 4 [https://i.imgur.com/uhrYzyt.png]

	warn 5 [https://i.imgur.com/DfBvmic.png]

Arguments

	<level>: The level of the warning you want to edit, this must be a
number between 1 and 5.

	[url]: The direct URL to the image you want to use. Omit this argument
to remove images.

warnsysteminfo

Note

This command is locked to the bot owner.

Syntax

[p]warnsysteminfo

Description

Shows multiple informations about WarnSystem such as its author, its version,
the link for the Github repository, the Discord server and the documentation,
and a link for my Patreon if you want to support my work ;)

Additional resources

Migrating to WarnSystem 1.3

The 3rd major update of WarnSystem brought important changes to the way data is
stored. This allows a gain in performance and the reduction of the file size.

Once you load WarnSystem for the first time after updating, the cog will try
to run its data conversion tool to convert your data to the new body. This can
take a while, but servers with really big config files (looking at you
Fortnite), the conversion tool might not be powerful enough to handle this
much data.

If you’re reading this, then the conversion tool probably failed. If you
haven’t done it yet, contact me, El Laggron, and tell me about your issue.
This is not always related to the size of your file, and might be a simple
bug.

Warning

Before reading below, make sure you contacted me first. I will
tell you, based on the error and your data, if doing the steps below is
required.

If you’re not experienced with databases, ask me and I will help you with
the update.

I’m going to explain in details the changes brought with this update, so you
can try to convert the data yourself.

Find the code used for the data converter in the __init__.py file,
function is _convert_to_v1.

Caution

For obvious reasons, backup your data!

Two things are being changed inside the database :

Temporary warnings are stored as a dictionnary instead of a list

This is a value set within the guild settings (accessed with await
warnsystem.data.guild(ctx.guild).temporary_warns()) that stores temporary
mutes and bans. It stores the same data as the modlog history, but saving it
in its own place allow performance gains, by only iterating through the
warnings we’re looking for when unmuting/unbanning.

This is how the data was stored before 1.3 :

{
 "temporary_warns": [
 {
 "member": 221333470830526464,
 "level": 1,
 "author": 348415857728159745,
 "reason": "Advertising",
 "time": "Thu 01 August 2019 23:41:49",
 "duration": "1 minute and 12 seconds",
 "until": "Thu 01 August 2019 23:43:01",
 "roles": []
 }
]
}

As you can see, this is a list of dictionnaries, with all data required. The
change done here is that temporary_warns is a dictionnary, with the
member’s ID as the key, and the data associated to it as the value. This is
what the data above should look like after the update :

{
 "temporary_warns": {
 "221333470830526464": {
 "level": 1,
 "author": 348415857728159745,
 "reason": "Advertising",
 "time": "Thu 01 August 2019 23:41:49",
 "duration": "1 minute and 12 seconds",
 "until": "Thu 01 August 2019 23:43:01",
 "roles": []
 }
 }
}

Basically, the member key is deleted from the data dictionnary, and the ID
is used as the key.

Dates and durations are stored as seconds instead of sentences

Looking back at this, I took one of the worst possible decisions when coding
WarnSystem 1.0. I’m going to show you how a warning was stored before 1.3:

[
 {
 "level": 2,
 "author": 348415857728159745,
 "reason": "I'm testing",
 "time": "Thu 01 August 2019 23:42:25",
 "duration": "1 minute and 12 seconds",
 "until": "Thu 01 August 2019 23:43:37"
 }
]

The changes affects the time, duration and until keys. Using a
sentence for storing dates and durations was useful because I didn’t have to
touch anything when displaying the warn, just reading the dictionnary.

There was two problems with this:

	Storing text instead of a number is way heavier

	If I needed the time object, like for comparison, it could cost a lot of
resources.

Also, the until key was useless and could be calculated with the two
other keys.

The most common way of storing dates and durations when programming, which I
wasn’t aware of at that time, is only using seconds. For dates, computers
calculate the number of seconds since Epoch (1 january 1970). Sounds like a
big number, but it is the most efficient way of storing a date. You can compare
two dates easily (which is needed for automod), and getting the day of the
month, or the hour and minute, only consists of divisions.

WarnSystem 1.3 converts all of those dates and durations to seconds, this is
what a warning should look like after the update:

{
 "level": 2,
 "author": 348415857728159745,
 "reason": "I'm testing",
 "time": 1564695745,
 "duration": 72,
}

Converting the time key is very easy:

>>> from datetime import datetime
>>> time = datetime.strptime("Thu 01 August 2019 23:42:25", "%a %d %B %Y %H:%M:%S")
>>> time.timestamp()
1564695745.0

However, converting the duration is a horrible nightmare, you’re allowed to
blame me as much as you want for this stupid choice. The duration was stored
with an english sentence like this: "3 hours, 15 minutes and 1 second". I
thought it was going to be easier, but hell no, it’s really dumb. WarnSystem
tries to convert this insanity to a pure number of seconds with some weird
code below:

from datetime import timedelta

units_name = {
 0: (_("year"), _("years")),
 1: (_("month"), _("months")),
 2: (_("week"), _("weeks")),
 3: (_("day"), _("days")),
 4: (_("hour"), _("hours")),
 5: (_("minute"), _("minutes")),
 6: (_("second"), _("seconds")),
} # yes this can be translated
separator = _(" and ")
time_pattern = re.compile(
 (
 r"(?P<time>\d+)(?:)(?P<unit>{year}|{years}|{month}|"
 r"{months}|{week}|{weeks}|{day}|{days}|{hour}|{hours}"
 r"|{minute}|{minutes}|{second}|{seconds})(?:(,)|({separator}))?"
).format(
 year=units_name[0][0],
 years=units_name[0][1],
 month=units_name[1][0],
 months=units_name[1][1],
 week=units_name[2][0],
 weeks=units_name[2][1],
 day=units_name[3][0],
 days=units_name[3][1],
 hour=units_name[4][0],
 hours=units_name[4][1],
 minute=units_name[5][0],
 minutes=units_name[5][1],
 second=units_name[6][0],
 seconds=units_name[6][1],
 separator=separator,
)
)

def get_timedelta(text: str) -> timedelta:
 # that one is especially hard to convert
 # time is stored like this: "3 hours, 2 minutes and 30 seconds"
 # why did I even do this fuck me
 if isinstance(text, int):
 return timedelta(seconds=text)
 time = timedelta()
 results = re.findall(time_pattern, text)
 for match in results:
 amount = int(match[0])
 unit = match[1]
 if unit in units_name[0]:
 time += timedelta(days=amount * 366)
 elif unit in units_name[1]:
 time += timedelta(days=amount * 30.5)
 elif unit in units_name[2]:
 time += timedelta(weeks=amount)
 elif unit in units_name[3]:
 time += timedelta(days=amount)
 elif unit in units_name[4]:
 time += timedelta(hours=amount)
 elif unit in units_name[5]:
 time += timedelta(minutes=amount)
 else:
 time += timedelta(seconds=amount)
 return time

If this fails and you want to try to do it yourself, good luck! Full code is
available in the __init__.py file within the warnsystem directory.

RoleInvite

API Reference

	
class roleinvite.api.API(bot, config)

	Bases: object [https://docs.python.org/3.8/library/functions.html#object]

Interact with RoleInvite from your cog.

To import the cog and use the functions, type this in your code:

roleinvite = bot.get_cog('RoleInvite').api

Warning

If roleinvite is None [https://docs.python.org/3.8/library/constants.html#None], the cog is
not loaded/installed. You won’t be able to interact with
the API at this point.

Tip

You can get the cog version by doing this

version = bot.get_cog('RoleInvite').__version__

	
escape_invite_links(text: str [https://docs.python.org/3.8/library/stdtypes.html#str]) → str [https://docs.python.org/3.8/library/stdtypes.html#str]

	Return a Discord invite link that won’t show an embed

	Parameters

	text (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The text which needs to have invite links previews removes

	Returns

	text – The cleared text

	Return type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
await update_invites() → dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	Update all invites registered to keep their uses count good.

This is usually called on cog load since these values
could have been modified while the bot or the cog was offline.

	Returns

	The updated dictionnary.

Note

The value enabled may have been switched to False [https://docs.python.org/3.8/library/constants.html#False]
if the manage_guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Permissions.manage_guild] permission was
lost on the guild.

	Return type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	
await add_invite(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], invite: str [https://docs.python.org/3.8/library/stdtypes.html#str], roles: list [https://docs.python.org/3.8/library/stdtypes.html#list]) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Add an invite link to the autorole system.

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild to get the invites from.

	invite (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The invite link to create/extend. Give main or default if
you want to edit the main/default autorole system.

	roles (list [https://docs.python.org/3.8/library/stdtypes.html#list]) – A list of roles ID to add to the roles list.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if successful

	Return type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	Raises

	
	NotInvite – The invite given is not a discord invite, not is is main/default.

	CannotGetInvites – The bot doesn’t have the permission to get the guild’s invites

	EmptyRolesList – The list of roles given is empty

	InviteNotFound – The invite given doesn’t exist in the guild.

	
await remove_invite(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], invite: str [https://docs.python.org/3.8/library/stdtypes.html#str], roles: list [https://docs.python.org/3.8/library/stdtypes.html#list] = []) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Remove a list [https://docs.python.org/3.8/library/stdtypes.html#list] of roles from the invite links.

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild to get the invites from.

	roles (list [https://docs.python.org/3.8/library/stdtypes.html#list]) – A : py:class:list [https://docs.python.org/3.8/library/stdtypes.html#list] of roles ID to remove from the roles list. If it’s empty, it will
remove the invite from the autorole system.

	invite (:py:class`str`) – The invite to remove roles from. Give main or default to edit the main/default
autorole system.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if successful.

	Return type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	Raises

	KeyError [https://docs.python.org/3.8/library/exceptions.html#KeyError] – The invite given doesn’t exist.

	
await get_invites(guild) → dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	Return a list [https://docs.python.org/3.8/library/stdtypes.html#list] of the invites linked to the autorole system of the guild.

	Parameters

	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild to get the invites from.

	Returns

	A dict [https://docs.python.org/3.8/library/stdtypes.html#dict] of invites linked to any role on the guild.

Example

{
 "main" : {
 "roles" : [
 987654321234567890
]
 },
 "https://discord.gg/example" : {
 "roles" : [
 012345678987654321,
 987654321234567890
],
 "uses" : 42
 }
}

	Return type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

Errors

Custom error handling used for the cog and the API

If you need to prevent and exception, do it like this

errors = bot.get_cog('RoleInvite').errors

try:
 await api.add_invite(
 ctx.guild, 'main', [42]
)
except errors.CannotAddRole:
 print("Missing permissions")
except InviteNotFound:
 print("Invalid invite")
except:
 # occurs for any exception
 print("Fatal error")
else:
 # executed if the try succeeded
 print("All good")
finally:
 # always executed
 print("End of function")

	
exception roleinvite.errors.EmptyRolesList

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The list of roles that needs to be linked to an invite is empty.

	
exception roleinvite.errors.NotInvite

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The invite sent is not found as a discord.Invite object.

	
exception roleinvite.errors.InviteNotFound

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The invite sent isn’t in the guild’s invite list.

	
exception roleinvite.errors.CannotGetInvites

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The bot isn’t allowed to get the guild invites.
Manage server permission is needed.

	
exception roleinvite.errors.CannotAddRole

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The bot isn’t allowed to give a role.
The role hierarchy was modified or a 3rd party module added the role without check.

Tournaments

API Reference

Base

Tournament

	
class tournaments.objects.Tournament(bot: redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red], guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], config: redbot.core.config.Config [https://docs.discord.red/en/latest/framework_config.html#redbot.core.config.Config], custom_config: str [https://docs.python.org/3.8/library/stdtypes.html#str], name: str [https://docs.python.org/3.8/library/stdtypes.html#str], game: str [https://docs.python.org/3.8/library/stdtypes.html#str], url: str [https://docs.python.org/3.8/library/stdtypes.html#str], id: str [https://docs.python.org/3.8/library/stdtypes.html#str], limit: Optional[int [https://docs.python.org/3.8/library/functions.html#int]], status: str [https://docs.python.org/3.8/library/stdtypes.html#str], tournament_start: datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime], bot_prefix: str [https://docs.python.org/3.8/library/stdtypes.html#str], cog_version: str [https://docs.python.org/3.8/library/stdtypes.html#str], data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict])

	Bases: object [https://docs.python.org/3.8/library/functions.html#object]

Represents a tournament in a guild.

This object is created as soon as the tournament is setup, and destroyed only once it ends.

The config is loaded inside and will not be updated unless reloaded.

This contains all of the methods useful for the tournament, a list of Participant and a list
of Match, and a discord.ext.tasks.Loop [https://discordpy.readthedocs.io/en/latest/ext/tasks/index.html#discord.ext.tasks.Loop] task updating the infos from the bracket.

This contains the base structure, but no interface with a bracket, this has to be implemented
later by inheriting from this class and overwriting the abstract methods, allowing multiple
providers to work with the same structure.

If you’re implementing this for a new provider, the following methods need to be implemented:

	_get_all_rounds

	_update_match_list

	_update_participants_list

	start

	stop

	add_participant

	add_participants

	destroy_player

	list_participants

	list_matches

	reset

And set the following class vars with your other inherited objects for Participant and
Match :

	match_object

	participant_object

See challonge.py for an example.

	Parameters

	
	bot (redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red]) – The bot object

	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The current guild for the tournament

	config (redbot.core.Config) – The cog’s Config object

	name (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Name of the tournament

	game (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Name of the game

	url (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Link of the bracket

	id (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Internal ID for the tournament

	limit (Optional[int [https://docs.python.org/3.8/library/functions.html#int]]) – An optional limit of participants

	status (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The status provided by the API

	tournament_start (datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]) – Expected start time for this tournament. Planned events are based on this.

	bot_prefix (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – A prefix to use for displaying commands without context.

	cog_version (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Current version of Tournaments

	data (dict [https://docs.python.org/3.8/library/stdtypes.html#dict]) – A dict with all the config required for the tournament (combines guild and game settings)

	
bot

	The bot object

	Type

	redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red]

	
guild

	The current guild for the tournament

	Type

	discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]

	
config

	The cog’s Config object

	Type

	redbot.core.Config

	
name

	Name of the tournament

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
game

	Name of the game

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
url

	Link of the bracket

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
id

	Internal ID for the tournament

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
limit

	An optional limit of participants

	Type

	Optional[int [https://docs.python.org/3.8/library/functions.html#int]]

	
status

	The status provided by the API

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
tournament_start

	Expected start time for this tournament. Planned events are based on this.

	Type

	datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]

	
tz

	The timezone of the tournament. You need to use this when creating datetime objects.

from datetime import datetime
now = datetime.now(tz=tournament.tz)

	Type

	datetime.tzinfo [https://docs.python.org/3.8/library/datetime.html#datetime.tzinfo]

	
bot_prefix

	A prefix to use for displaying commands without context.

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
cog_version

	Current version of Tournaments

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
participants

	List of participants in the tournament

	Type

	List[Participant]

	
matches

	List of open matches in the tournament

	Type

	List[Match]

	
streamers

	List of streamers in the tournament

	Type

	List[Streamer]

	
winner_categories

	List of categories created for the winner bracket

	Type

	List[discord.CategoryChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.CategoryChannel]]

	
loser_categories

	List of categories created for the loser bracket

	Type

	List[discord.CategoryChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.CategoryChannel]]

	
category

	The category defined (our categories will be created below)

	Type

	Optional[discord.CategoryChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.CategoryChannel]]

	
announcements_channel

	The channel for announcements

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
checkin_channel

	The channel for check-in

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
queue_channel

	The channel for match queue

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
register_channel

	The channel for registrations

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
scores_channel

	The channel for score setting

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
stream_channel

	The channel for announcing matches on stream

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
to_channel

	The channel for tournament organizers. Send warnings there.

	Type

	discord.TextChanne]

	
vip_register_channel

	A channel where registrations are always open

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
participant_role

	The role given to participants

	Type

	discord.Role [https://discordpy.readthedocs.io/en/latest/api.html#discord.Role]

	
streamer_role

	Role giving access to stream commands

	Type

	Optional[discord.Role [https://discordpy.readthedocs.io/en/latest/api.html#discord.Role]]

	
to_role

	Role giving access to T.O. commands

	Type

	Optional[discord.Role [https://discordpy.readthedocs.io/en/latest/api.html#discord.Role]]

	
credentials

	Credentials for connecting to the bracket

	Type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	
delay

	Time in minutes until disqualifying a participant for AFK

	Type

	int [https://docs.python.org/3.8/library/functions.html#int]

	
time_until_warn

	Represents the different warn times for duration

	Type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	
autostop_register

	Should the bot close registrations when it’s full?

	Type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
ignored_events

	A list of events to ignore (checkin/register start/stop)

	Type

	list [https://docs.python.org/3.8/library/stdtypes.html#list]

	
register_start

	When we should open the registrations automatically

	Type

	Optional[datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]]

	
register_second_start

	When we should open the registrations a second time automatically

	Type

	Optional[datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]]

	
register_stop

	When we should close the registrations automatically

	Type

	Optional[datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]]

	
checkin_start

	When we should open the checkin automatically

	Type

	Optional[datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]]

	
checkin_stop

	When we should close the checkin automatically

	Type

	Optional[datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]]

	
ruleset_channel

	Channel for the rules

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
game_role

	Role targeted at players for this game. Basically we use that role when opening the
registrations, for opening the channel and pinging.

	Type

	Optional[discord.Role [https://discordpy.readthedocs.io/en/latest/api.html#discord.Role]]

	
baninfo

	Baninfo set (ex: 3-4-2)

	Type

	Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]]

	
ranking

	Data for braacket ranking

	Type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	
stages

	List of allowed stages

	Type

	List[str [https://docs.python.org/3.8/library/stdtypes.html#str]]

	
counterpicks

	List of allowed counterpicks

	Type

	List[str [https://docs.python.org/3.8/library/stdtypes.html#str]]

	
phase

	Something very important! Used for knowing what is the current phase of the tournament.
It is also used by commands to know if it is allowed to run.

Can be the following values:

	"pending": Tournament just setup, nothing open yet

	"register": Registrations or check-in started and are not finished

	"awaiting": Registrations and check-in done, awaiting upload and start

	"ongoing": Tournament is started and ongoing

	"finished": Tournament done. Should be immediatly deleted unless there’s an issue

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
register_phase

	Defines the current status of registration.

Can be the following values:

	"manual": No start date setup, waiting for manual start

	"pending": Start date setup, awaiting automatic start

	"ongoing": Registrations active

	"onhold": Registrations started and ended once, but awaiting a second start

	"done": Registrations ended

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
checkin_phase

	Defines the current status of check-in.

Can be the following values:

	"manual": No start date setup, waiting for manual start

	"pending": Start date setup, awaiting automatic start

	"ongoing": Check-in active

	"onhold": Check-in started and ended once, but awaiting a second start

	"done": Check-in ended

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
register_message

	The pinned message in the registrations channel

	Type

	Optional[discord.Message [https://discordpy.readthedocs.io/en/latest/api.html#discord.Message]]

	
checkin_reminders

	A list of reminders to send for the check-in. Contains tuples of two items: when to send
the reminder (minutes before check-in end date), and if the bot should DM members. This is
calculated on check-in start.

	Type

	List[Tuple[int [https://docs.python.org/3.8/library/functions.html#int], bool [https://docs.python.org/3.8/library/functions.html#bool]]]

	
lock

	A lock acquired when the tournament is being refreshed by the loop task, to prevent
commands like win or dq from being run at the same time.

New since beta 13: The lock is also acquired with the [p]in command to prevent too
many concurrent tasks, breaking the limit.

	Type

	asyncio.Lock [https://docs.python.org/3.8/library/asyncio-sync.html#asyncio.Lock]

	
task

	The task for the loop_task function (discord.ext.tasks.Loop [https://discordpy.readthedocs.io/en/latest/ext/tasks/index.html#discord.ext.tasks.Loop] object)

	Type

	asyncio.Task [https://docs.python.org/3.8/library/asyncio-task.html#asyncio.Task]

	
task_errors

	Number of errors that occured within the loop task. If it reaches 5, task is cancelled.

	Type

	int [https://docs.python.org/3.8/library/functions.html#int]

	
top_8

	Represents when the top 8 and bo5 begins in the bracket.

	Type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	
matches_to_announce

	A list of strings to announce in the defined queue channel. This is done to prevent sending
too many messages at once and hitting ratelimits, so we wrap messages together.

	Type

	List[str [https://docs.python.org/3.8/library/stdtypes.html#str]]

	
participant_object

	alias of tournaments.objects.base.Participant

	
match_object

	alias of tournaments.objects.base.Match

	
cancel()

	Correctly clears the object, stopping the task and removing ranking data.

	
classmethod await from_saved_data(bot: redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red], guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], config: redbot.core.config.Config [https://docs.discord.red/en/latest/framework_config.html#redbot.core.config.Config], cog_version: str [https://docs.python.org/3.8/library/stdtypes.html#str], data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict], config_data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict])

	Loads a tournament from Config.

Due to Python’s weird behaviour, this method must be reimplemented and simply called back
without changes.

	
to_dict() → dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	Returns a dict ready for Config.

	
await save()

	Saves data with Config. This is done with the loop task during a tournament but must be
called while it’s not ongoing.

	
property allowed_roles

	Return a list of roles that should have access to the temporary channels.

	
next_scheduled_event() → Tuple[str [https://docs.python.org/3.8/library/stdtypes.html#str], datetime.timedelta [https://docs.python.org/3.8/library/datetime.html#datetime.timedelta]]

	Returns the next scheduled event (register/checkin/None) with the corresponding timedelta

	
await warn_bracket_change(*sets)

	Warn T.O.s of a bracket change.

	Parameters

	*sets (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The list of affected sets.

	
find_participant(*, player_id: Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]] = None, discord_id: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None, discord_name: Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]] = None) → Tuple[int [https://docs.python.org/3.8/library/functions.html#int], tournaments.objects.base.Participant]

	Find a participant in the internal cache, and returns its object and position in the list.

You need to provide only one of the parameters.

	Parameters

	
	player_id (Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]]) – Player’s ID on the bracket, as returned by Participant.player_id

	discord_id (Optional[int [https://docs.python.org/3.8/library/functions.html#int]]) – Player’s Discord ID

	discord_name (Optional[str], as returned by discord.Member.id [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member.id]) – Player’s full Discord name, as returned by str(discord.Member)

	Returns

	The index of the participant in the list (useful for deletion or deplacement) and
its Participant object

	Return type

	Tuple[int [https://docs.python.org/3.8/library/functions.html#int], Participant]

	Raises

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – No parameter was provided

	
find_match(*, match_id: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None, match_set: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None, channel_id: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None) → Tuple[int [https://docs.python.org/3.8/library/functions.html#int], tournaments.objects.base.Match]

	Find a match in the internal cache, and returns its object and position in the list.

You need to provide only one of the parameters.

	Parameters

	
	match_id (Optional[int [https://docs.python.org/3.8/library/functions.html#int]]) – Match’s ID on the bracket, as returned by Match.id

	match_set (Optional[int [https://docs.python.org/3.8/library/functions.html#int]]) – Match’s number, or suggested play order, on the bracket, as returned by Match.set

	channel_id (Optional[id]) – Discord channel’s ID, as returned by discord.TextChannel.id [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel.id]

Warning

A match may not have a channel assigned

	Returns

	The index of the match in the list (useful for deletion or deplacement) and
its Match object

	Return type

	Tuple[int [https://docs.python.org/3.8/library/functions.html#int], Match]

	Raises

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – No parameter was provided

	
find_streamer(*, channel: Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]] = None, discord_id: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None) → Tuple[int [https://docs.python.org/3.8/library/functions.html#int], tournaments.objects.base.Streamer]

	Find a streamer in the internal cache, and returns its object and position in the list.

You need to provide only one of the parameters.

	Parameters

	
	channel (Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]]) – The streamer’s channel, as returned by Streamer.channel (not full URL, only last
part). Example for https://twitch.tv/dreekius, use channel="dreekius".

	discord_id (Optional[int [https://docs.python.org/3.8/library/functions.html#int]]) – Streamer’s Discord ID

	Returns

	The index of the streamer in the list (useful for deletion or deplacement) and
its Streamer object

	Return type

	Tuple[int [https://docs.python.org/3.8/library/functions.html#int], Streamer]

	Raises

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – No parameter was provided

	
await start_registration(second=False)

	Open the registrations and save.

	Parameters

	second (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If this is the second time registrations are started (will not annouce the same
message, and keep updating the same pinned message). Defaults to False [https://docs.python.org/3.8/library/constants.html#False].

	
await end_registration()

	Close the registrations and save.

If the check-in is also done, participants will be seeded and uploaded.

	Parameters

	background (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If the function is called in a background loop. If True [https://docs.python.org/3.8/library/constants.html#True], the bot will do actions
knowing there’s no context command (for now, means a background seed and upload).
Defaults to False [https://docs.python.org/3.8/library/constants.html#False].

	
await start_check_in()

	Open the check-in and save.

This will also calculate and fill the checkin_reminders list.

	
await call_check_in(with_dm: bool [https://docs.python.org/3.8/library/functions.html#bool] = False)

	Pings participants that have not checked in yet.

Only works with a check-in channel setup and a stop time.

	Parameters

	with_dm (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If the bot should DM unchecked members too. Defaults to False [https://docs.python.org/3.8/library/constants.html#False].

Caution

Prevent using this if there are too many unchecked members, as Discord
started to ban bots sending too many DMs.

	
await end_checkin()

	Close the check-in, unregister unchecked members (attempts to DM) and save.

If the registrations are also done, participants will be seeded and uploaded.

	Parameters

	background (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If the function is called in a background loop. If True [https://docs.python.org/3.8/library/constants.html#True], the bot will do actions
knowing there’s no context command (for now, means a background seed and upload).
Defaults to False [https://docs.python.org/3.8/library/constants.html#False].

	
await register_participant(member: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], send_dm: bool [https://docs.python.org/3.8/library/functions.html#bool] = True)

	Register a new participant to the tournament (add role) and save.

If the check-in has started, participant will be pre-checked.

If there is a limit of participants, the auto-stop setting for registrations is enabled and
the limit is reached, registrations will be closed.

The Participant object is not returned and directly added to the list.

	Parameters

	
	member (discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]) – The member to register. They must be in the server.

	send_dm (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If the bot should DM the new participant for their registrations. Defaults to True [https://docs.python.org/3.8/library/constants.html#True].

	
await unregister_participant(member: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], send_dm: bool [https://docs.python.org/3.8/library/functions.html#bool] = True)

	Remove a participant.

If the player is uploaded on the bracket, they will also be removed from there. If the
tournament has started, member will be disqualified instead.

This removes roles and DMs the participant.

	Parameters

	member (discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]) – The member to disqualify

	Raises

	KeyError [https://docs.python.org/3.8/library/exceptions.html#KeyError] – The member is not registered

	
await seed_participants(remove_unchecked: bool [https://docs.python.org/3.8/library/functions.html#bool] = False)

	Seed the participants if ranking info is configured.

Warning

If an exception occurs, the list of participants will be rolled back to its
previous state, then the error propagates.

	Parameters

	remove_unchecked (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If unchecked members should be removed from the internal list and the upload. Defaults
to False [https://docs.python.org/3.8/library/constants.html#False]

	
await send_start_messages()

	Send the required messages when starting the tournament.

Depending on the configured channels, announcements will be sent in:

	The announcements channel

	The scores channel

	The queue channel

	
await announce_sets()

	Wraps the messages stored in matches_to_announce and sends them in the queue_channel.

	
await launch_sets()

	Launch pending matches, creating a channel and marking the match as ongoing.

This only launches 20 matches max.

This is wrapped inside asyncio.gather [https://docs.python.org/3.8/library/asyncio-task.html#asyncio.gather], so errors will not propagate.

	
update_streamer_list()

	Update the internal streamer’s list (next stream attr)

	
await launch_streams()

	Launch the streams (call the next matches in the streamer’s queue).

You must call update_streamer_list first.

	
await check_for_channel_timeout()

	Look through the ongoing/finished matches and compare durations to see if AFK check or
channel deletion is required, and proceed.

	
await check_for_too_long_matches()

	Look through the ongoing matches and verifies the duration. Warn if necessary.

	
loop_task

	A discord.ext.tasks.Loop [https://discordpy.readthedocs.io/en/latest/ext/tasks/index.html#discord.ext.tasks.Loop] object, started with the tournament’s start and running each 15
seconds.

Does the required background stuff, such as updating the matches list, launch new matches,
update streamers, check for AFK…

Running this will acquire our lock.

See the documentation on a Loop object for more details.

Warning

Use start_loop_task for starting the task, not Loop.start [https://discordpy.readthedocs.io/en/latest/ext/tasks/index.html#discord.ext.tasks.Loop.start].

	Raises

	asyncio.TimeoutError [https://docs.python.org/3.8/library/asyncio-exceptions.html#asyncio.TimeoutError] – Running the task took more than 30 seconds

	
await cancel_timeouts()

	Sometimes relaunching the bot after too long will result in a lot of DQs due to AFK checks,
so this function will cancel all AFK checks for the matches that are going to have
players DQed.

	
await start_loop_task()

	Starts the internal loop task.

This will check for possible leftovers and cancel any previous task matching our name
within the current asyncio loop. We do not want duplicated tasks, as this will result
in the worst nightmare (RIP DashDances #36 and Super Smash Bronol #46).

Then we try to prevent abusive disqualifications with cancel_timeouts. Oh and we also
set a contextual locale for i18n, see
redbot.core.i18n.set_contextual_locales_from_guild [https://docs.discord.red/en/latest/framework_i18n.html#redbot.core.i18n.set_contextual_locales_from_guild].

Finally, the task is started and given the name “Tournament {tournamet_id}”

	
stop_loop_task()

	Stops the loop task. This is preferred over discord.ext.tasks.Loop.cancel [https://discordpy.readthedocs.io/en/latest/ext/tasks/index.html#discord.ext.tasks.Loop.cancel].

	
await _get_all_rounds() → List[int [https://docs.python.org/3.8/library/functions.html#int]]

	Return a list of all rounds in the bracket. This is used to determine the top 8.

This is a new method because our Match class will not be created without players, so
we add this new method which only fetch what we need.

	Returns

	The list of rounds.

	Return type

	List[int [https://docs.python.org/3.8/library/functions.html#int]]

	
await _update_participants_list()

	Updates the internal list of participants, checking for changes such as:

	Player DQ/removal

	New player added (pre game)

Warning

A name change on remote is considered as a player removal + addition. If the
name doesn’t match any member, they will be rejected.

	
await _update_match_list()

	Updates the internal list of changes, checking for changes such as:

	Score set manually

	Score modified (if there are ongoing/finished sets beyond this match in the bracket,
they will be reset)

	Match reset (the set will be relaunched, ongoing/finished sets beyond this match in
the bracket will be reset)

	
await start()

	Starts the tournament.

	Raises

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – The tournament is already started.

	
await stop()

	Stops the tournament.

	Raises

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – The tournament is already stopped or not started.

	
await add_participant(name: str [https://docs.python.org/3.8/library/stdtypes.html#str], seed: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None)

	Adds a participant to the tournament.

	Parameters

	
	name (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The name of the participant

	seed (int [https://docs.python.org/3.8/library/functions.html#int]) – The participant’s new seed. Must be between 1 and the current number of participants
(including the new record). Omit to place at the bottom.

	
await add_participants(participants: Optional[List[tournaments.objects.base.Participant]] = None, force: bool [https://docs.python.org/3.8/library/functions.html#bool] = False) → int [https://docs.python.org/3.8/library/functions.html#int]

	Adds a list of participants to the tournament, ordered as you want them to be seeded.
The participants will have their Participant.player_id updated as needed.

	Parameters

	
	participants (Optional[List[Participant]]) – The list of participants. The first element will be seeded 1. If not provided, will
use the instance’s participants attribute instead.

	force (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If you want the bot to override the previous list of participants on the bracket.
Defaults to False [https://docs.python.org/3.8/library/constants.html#False].

	If set to True [https://docs.python.org/3.8/library/constants.html#True]: All manually added participants and seeding will be lost, and
the new list will be exactly the same as what’s provided. All player IDs will
be modified.

	If set to False [https://docs.python.org/3.8/library/constants.html#False]: The bot will call list_participants and remove all elements
from the list where the player ID is already inside the upstream list. Then we
bulk add what’s remaining, without clearing the rest.

Participants are still seeded, but at the end, separated from the rest.

	Returns

	How many members were appended to the list. Can be useful for knowing if the bot
appended participants or if it was an initial upload (or forced).

	Return type

	int [https://docs.python.org/3.8/library/functions.html#int]

	Raises

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – The list of participants provided was empty, or there was nothing new to upload.

	
await destroy_player(player_id: str [https://docs.python.org/3.8/library/stdtypes.html#str])

	Destroys a player. This is the same call as Player.destroy, but only the player ID is
needed. Useful for unavailable discord member.

	Parameters

	player_id (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The player to remove.

	
await list_participants() → List[tournaments.objects.base.Participant]

	Returns the list of participants from the tournament host.

	Returns

	The list of participants.

	Return type

	List[str [https://docs.python.org/3.8/library/stdtypes.html#str]]

	
await list_matches() → List[tournaments.objects.base.Match]

	Returns the list of matches from the tournament host.

	Returns

	The list of matches.

	Return type

	List[str [https://docs.python.org/3.8/library/stdtypes.html#str]]

	
await reset()

	Resets the bracket.

Participant

	
class tournaments.objects.Participant(member: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], tournament: tournaments.objects.base.Tournament)

	Bases: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]

Defines a participant in the tournament.

This inherits from discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member] and adds the necessary additional methods.

If you’re implementing this for a new provider, the following methods need to be implemented:

	player_id (may be a var or a property)

	destroy

	Parameters

	
	member (discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]) – The member participating to the tournament

	tournament (Tournament) – The current tournament

	
member

	The member participating to the tournament

	Type

	discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]

	
tournament

	The current tournament

	Type

	Tournament

	
elo

	An integer representing the player’s elo (seeding from braacket)

	Type

	int [https://docs.python.org/3.8/library/functions.html#int]

	
checked_in

	Defines if the member checked in

	Type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
match

	The player’s current match. None [https://docs.python.org/3.8/library/constants.html#None] if not in game.

	Type

	Optional[Match]

	
spoke

	Defines if the member spoke once in their channel (used for AFK check)

	Type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
reset()

	Resets the match attribute to None [https://docs.python.org/3.8/library/constants.html#None] and spoke to False [https://docs.python.org/3.8/library/constants.html#False] (match ended).

	
await check(send_dm: bool [https://docs.python.org/3.8/library/functions.html#bool] = True)

	Checks the member in.

In addition to changing the checked_in attribute, it also DMs the member
and saves the config.

	
property player_id

	Returns an identifier for the player, specific to the bracket.

This should be overwritten.

	
await destroy()

	Removes the participant from the tournament.

Represents an API call and should be overwritten.

Match

	
class tournaments.objects.Match(tournament: tournaments.objects.base.Tournament, round: int [https://docs.python.org/3.8/library/functions.html#int], set: str [https://docs.python.org/3.8/library/stdtypes.html#str], id: int [https://docs.python.org/3.8/library/functions.html#int], underway: bool [https://docs.python.org/3.8/library/functions.html#bool], player1: tournaments.objects.base.Participant, player2: tournaments.objects.base.Participant)

	Bases: object [https://docs.python.org/3.8/library/functions.html#object]

Defines a match in the tournament, with two players facing each other.

This should only be created when convenient, aka when a match needs to be started. Matches
with no players yet or finished are not builded.

If you’re implementing this for a new provider, the following methods need to be implemented:

	set_scores

	mark_as_underway

	unmark_as_underway (unused for now)

	Parameters

	
	tournament (Tournament) – The match’s tournament.

	round (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The round of this match in the bracket (e.g. 1 for first round of winner bracket, -1 for
first round of loser bracket).

	set (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The number of the match. Challonge calls this the suggested play order (goes from 1 to N,
the number of matches in the bracket).

	id (int [https://docs.python.org/3.8/library/functions.html#int]) – A unique identifier for the API

	underway (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If the match is underway (provided by API)

	player1 (Participant) – The first player of this match.

	player2 (Participant) – The second player of this match.

	
tournament

	The match’s tournament.

	Type

	Tournament

	
round

	The round of this match in the bracket (e.g. 1 for first round of winner bracket, -1 for
first round of loser bracket).

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
set

	The number of the match. Challonge calls this the suggested play order (goes from 1 to N,
the number of matches in the bracket).

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
id

	A unique identifier for the API

	Type

	int [https://docs.python.org/3.8/library/functions.html#int]

	
player1

	The first player of this match.

	Type

	Participant

	
player2

	The second player of this match.

	Type

	Participant

	
channel

	The channel for this match. May be None [https://docs.python.org/3.8/library/constants.html#None] if the match hasn’t started yet, or if it
couldn’t be created and is therefore in DM.

	Type

	Optional[discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]]

	
start_time

	Start time of this match. None [https://docs.python.org/3.8/library/constants.html#None] if it hasn’t started yet.

	Type

	Optional[datetime]

	
end_time

	End time of this match, or time of the latest message. None [https://docs.python.org/3.8/library/constants.html#None] if it hasn’t started or
ended yet. This is updated as soon as a message is sent in the channel. Used for knowing
when to delete the channel (5 min after last message).

	Type

	Optional[datetime]

	
status

	Defines the current state of the match.

	"pending": Waiting to be launched (no channel or stream pending)

	"ongoing": Match started

	"finished": Score set, awaiting channel deletion

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
warned

	Defines if there was a warn for duration. None [https://docs.python.org/3.8/library/constants.html#None] if no warn was sent, datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]
if there was one first warn sent (correspond to the time when it was send, we rely on that
to know when to send the second warn), and finally True [https://docs.python.org/3.8/library/constants.html#True] when the second warn is sent
(to the T.O.s).

	Type

	Optional[Union[datetime, bool [https://docs.python.org/3.8/library/functions.html#bool]]]

	
streamer

	The streamer assigned to this match, if any.

	Type

	Optional[Streamer]

	
on_hold

	True [https://docs.python.org/3.8/library/constants.html#True] if the match is not started but on hold, awaiting something (most likely inside a
stream queue, waiting for its turn)

	Type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
is_top8

	True [https://docs.python.org/3.8/library/constants.html#True] if the match is in the top 8 of the tournament

	Type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
is_bo5

	True [https://docs.python.org/3.8/library/constants.html#True] if the match is in BO5 format instead of BO3

	Type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
round_name

	Name of the round (ex: Winner semi-finals, Loser round -2)

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
checked_dq

	If we performed AFK checks. Setting this to True [https://docs.python.org/3.8/library/constants.html#True] is possible and will disable further
AFK checks for this match.

	Type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
property duration: Optional[datetime.timedelta]

	Returns the duration of this match, or None [https://docs.python.org/3.8/library/constants.html#None] if it hasn’t started.

	
await send_message(reset: bool [https://docs.python.org/3.8/library/functions.html#bool] = False) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Send a message in the created channel.

	Parameters

	reset (bool [https://docs.python.org/3.8/library/functions.html#bool]) – True if the match is started because of a reset.

	Returns

	False if the message couldn’t be sent, and was sent in DM instead.

	Return type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	
await start_stream()

	Send a pending set, awaiting for its turn, on stream. Only call this if there’s a streamer.

	
await stream_queue_add()

	Modify the status of an ongoing match to tell that it is now on stream.

This is called when a streamer adds an ongoing match to its queue, then the following
things are done:

	AFK checks are cancelled

	If the match is the first one in the stream queue: Nothing is cancelled, we just
ping the players with the stream informations.

	If the match is not the first one in the stream queue: We mark the match as not
underway, change the status to pending, and tell the players.

	
await cancel_stream()

	Call if the stream is cancelled (streamer left of match removed from queue).

A message will be sent, telling players to start playing, and AFK checks will be
re-enabled.

	
await create_channel(category: discord.channel.CategoryChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.CategoryChannel], *allowed_roles: list [https://docs.python.org/3.8/library/stdtypes.html#list]) → discord.channel.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]

	Creates a channel for the match and returns its object.

	Returns

	The created text channel

	Return type

	discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]

	
await launch(*, category: Optional[discord.channel.CategoryChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.CategoryChannel]] = None, restart: bool [https://docs.python.org/3.8/library/functions.html#bool] = False, allowed_roles: List[discord.role.Role [https://discordpy.readthedocs.io/en/latest/api.html#discord.Role]] = [])

	Launches the set.

This does the following:

	Try to create a text channel with permissions for the two players and the given roles

	Send a DM to both members

	Mark the set as ongoing

	Parameters

	
	category (Optional[discord.CategoryChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.CategoryChannel]]) – The category where to put the channel. If this is not provided, one will be found.
If you’re launching multiple sets at once with asyncio.gather, use this to prevent
seeing one category per channel

	restart (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If the match is restarted.

	allowed_roles (List[discord.Role [https://discordpy.readthedocs.io/en/latest/api.html#discord.Role]]) – A list of roles with read_messages permission in the text channel.

	
await relaunch()

	This is called in case of a match reset (usually from remote).

We inform the players they need to play their set again, eventually re-use their old
channel if it still exists.

	
await check_inactive()

	Checks for inactive players (reads Participant.spoke only), and DQ them if required.

Warning

This doesn’t check durations and assumes it’s been done already.

Will set checked_dq to True [https://docs.python.org/3.8/library/constants.html#True].

	
await warn_length()

	Warn players in their channels because of the duration of their match.

	
await warn_to_length()

	Warn T.O.s because of the duration of this match. Also tell the players

	
await end(player1_score: int [https://docs.python.org/3.8/library/functions.html#int], player2_score: int [https://docs.python.org/3.8/library/functions.html#int], upload: bool [https://docs.python.org/3.8/library/functions.html#bool] = True)

	Set the score and end the match.

The winner is determined by comparing the two scores (defaults to player 1 if equal).

	Parameters

	
	player1_score (int [https://docs.python.org/3.8/library/functions.html#int]) – First player’s score.

	player2_score (int [https://docs.python.org/3.8/library/functions.html#int]) – Second player’s score.

	upload (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If the score should be uploaded to the bracket. Set False [https://docs.python.org/3.8/library/constants.html#False] to only send the message
with a note “score set on bracket” added. Defaults to True [https://docs.python.org/3.8/library/constants.html#True].

	
await force_end()

	Called when a set is cancelled (remove bracket modifications or reset).

The channel is deleted, a DM is sent, and the instance will most likely be deleted soon
after.

	
await disqualify(player: Union[tournaments.objects.base.Participant, int [https://docs.python.org/3.8/library/functions.html#int]])

	Called when a player in the set is destroyed.

There is no API call, just messages sent to the players.

	player: Union[Participant, int]
	The disqualified player. Provide an int [https://docs.python.org/3.8/library/functions.html#int] if the member left.

	
await forfeit(player: tournaments.objects.base.Participant)

	Called when a player in the set forfeits this match.

This doesn’t always mean that the player quits the tournament, as they may continue in the
loser bracket.

Sets a score of -1 0

	Parameters

	player (Participant) – The player that forfeits.

	
cancel()

	Mark a match as finished (updated status and end_time + calls Participant.reset)

	
await set_scores(player1_score: int [https://docs.python.org/3.8/library/functions.html#int], player2_score: int [https://docs.python.org/3.8/library/functions.html#int], winner: Optional[tournaments.objects.base.Participant] = None)

	Set the score for the set.

	Parameters

	
	player1_score (int [https://docs.python.org/3.8/library/functions.html#int]) – The score of the first player.

	player2_score (int [https://docs.python.org/3.8/library/functions.html#int]) – The score of the second player.

	winner (Optional[Participant]) – The winner of the set. If not provided, the player with the highest score will be
selected.

	
await mark_as_underway()

	Marks the match as underway.

	
await unmark_as_underway()

	Unmarks the match as underway.

This shouldn’t ever be needed, just here in case of.

Streamer

	
class tournaments.objects.Streamer(tournament: tournaments.objects.base.Tournament, member: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], channel: str [https://docs.python.org/3.8/library/stdtypes.html#str], respect_order: bool [https://docs.python.org/3.8/library/functions.html#bool] = False)

	Bases: object [https://docs.python.org/3.8/library/functions.html#object]

Represents a streamer in the tournament. Will be assigned to matches. Does not necessarily
exists on remote depending on the provider.

There is no API call in this class for now.

	Parameters

	
	tournament (Tournament) – The current tournament

	member (discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]) – The streamer on Discord. Must be in the tournament’s guild.

	channel (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The streamer’s channel. Must only be the last part of the URL, not full. (e.g. for
https://twitch.tv/el_laggron use channel="el laggron")

	
tournament

	The current tournament

	Type

	Tournament

	
member

	The streamer on Discord. Must be in the tournament’s guild.

	Type

	discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]

	
channel

	The streamer’s channel. Must only be the last part of the URL, not full. (e.g. for
https://twitch.tv/el_laggron use channel="el laggron")

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
link

	The streamer’s full channel URL

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
room_id

	Streamer’s room ID, specific to Smash Bros.

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
room_code

	Streamer’s room code, specific to Smash Bros.

	Type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
matches

	The list of matches in the streamer’s queue. Can be Match if it exists (both players
available, on hold) or int [https://docs.python.org/3.8/library/functions.html#int], representing the set.

	Type

	List[Union[Match, int [https://docs.python.org/3.8/library/functions.html#int]]]

	
current_match

	The streamer’s current match.

	Type

	Optional[Match]

	
get_set(x)

	Return the set number of a match in the streamer’s queue. Accepts Match or int [https://docs.python.org/3.8/library/functions.html#int].

	Parameters

	x (Union[Match, int [https://docs.python.org/3.8/library/functions.html#int]]) – The match you need

	
set_room(room_id: str [https://docs.python.org/3.8/library/stdtypes.html#str], code: Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]] = None)

	Set streamer’s room info (specific to Smash Bros.)

	Parameters

	
	room_id (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Streamer’s room ID

	code (Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]]) – Streamer’s room code

	
await check_integrity(sets: int [https://docs.python.org/3.8/library/functions.html#int], *, add: bool [https://docs.python.org/3.8/library/functions.html#bool] = False)

	Verify if the list of sets provided is valid before adding them to the list.

	Parameters

	
	sets (int [https://docs.python.org/3.8/library/functions.html#int]) – The list of sets you want to check (and add). Only int [https://docs.python.org/3.8/library/functions.html#int], no Match instance.

	add (bool [https://docs.python.org/3.8/library/functions.html#bool]) – If you want to add the valid sets to the queue at the same time.

	Returns

	A dictionnary of the errors that occured (set -> translated error msg). If this is
empty, it’s all good.

	Return type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	
await add_matches(*sets)

	Add matches to the streamer’s queue.

	Parameters

	*sets (Union[Match, int [https://docs.python.org/3.8/library/functions.html#int]]) – The matches you want to add.

	
await remove_matches(*sets: int [https://docs.python.org/3.8/library/functions.html#int])

	Remove a list of matches from the streamer’s queue.

	Parameters

	*sets (int [https://docs.python.org/3.8/library/functions.html#int]) – The list of sets you want to remove. Only int [https://docs.python.org/3.8/library/functions.html#int], no Match instance.

	Raises

	KeyError [https://docs.python.org/3.8/library/exceptions.html#KeyError] – The list was unchanged.

	
swap_match(set1: int [https://docs.python.org/3.8/library/functions.html#int], set2: int [https://docs.python.org/3.8/library/functions.html#int])

	Swap the position of two matches in the streamer’s queue.

	Parameters

	
	set1 (int [https://docs.python.org/3.8/library/functions.html#int]) – The first set.

	set2 (int [https://docs.python.org/3.8/library/functions.html#int]) – The second set.

	Raises

	KeyError [https://docs.python.org/3.8/library/exceptions.html#KeyError] – One or more sets not found

	
insert_match(set: int [https://docs.python.org/3.8/library/functions.html#int], *, set2: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None, position: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None)

	Insert a match in the list. The match must already exist in the list.

Provide either set2 or position as keyword argument.

	Parameters

	
	set (int [https://docs.python.org/3.8/library/functions.html#int]) – The set you want to move. Only int [https://docs.python.org/3.8/library/functions.html#int] type, not Match.

	set2 (int [https://docs.python.org/3.8/library/functions.html#int]) – The set you want to use to define the position. Only int [https://docs.python.org/3.8/library/functions.html#int] type, not Match.

	position (int [https://docs.python.org/3.8/library/functions.html#int]) – The new position in the list. 0 = first ; 1 = second …

Providing a number out of bounds will move the item at the limit, it’s just Python’s
magic. (eg: -5 moves to first place)

	Raises

	
	KeyError [https://docs.python.org/3.8/library/exceptions.html#KeyError] – The given set was not found

	RuntimeError [https://docs.python.org/3.8/library/exceptions.html#RuntimeError] – Neither set2 or position was provided.

	
await end()

	Cancels all streams for the streamer’s queue, telling the players.

Basically calls Match.cancel_stream for existing matches.

Challonge API

	
class tournaments.objects.ChallongeTournament(bot: redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red], guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], config: redbot.core.config.Config [https://docs.discord.red/en/latest/framework_config.html#redbot.core.config.Config], custom_config: str [https://docs.python.org/3.8/library/stdtypes.html#str], name: str [https://docs.python.org/3.8/library/stdtypes.html#str], game: str [https://docs.python.org/3.8/library/stdtypes.html#str], url: str [https://docs.python.org/3.8/library/stdtypes.html#str], id: str [https://docs.python.org/3.8/library/stdtypes.html#str], limit: Optional[int [https://docs.python.org/3.8/library/functions.html#int]], status: str [https://docs.python.org/3.8/library/stdtypes.html#str], tournament_start: datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime], bot_prefix: str [https://docs.python.org/3.8/library/stdtypes.html#str], cog_version: str [https://docs.python.org/3.8/library/stdtypes.html#str], data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict])

	Bases: tournaments.objects.base.Tournament

	
classmethod build_from_api(bot: redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red], guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], config: redbot.core.config.Config [https://docs.discord.red/en/latest/framework_config.html#redbot.core.config.Config], custom_config: str [https://docs.python.org/3.8/library/stdtypes.html#str], prefix: str [https://docs.python.org/3.8/library/stdtypes.html#str], cog_version: str [https://docs.python.org/3.8/library/stdtypes.html#str], data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict], config_data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict])

	Builds a new Tournament from Challonge raw data.

	Parameters

	
	bot (redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red]) – The bot object

	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The current guild for the tournament

	config (redbot.core.Config) – The cog’s Config object

	prefix (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – A prefix to use for displaying commands without context.

	cog_version (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – Current version of Tournaments

	data (dict [https://docs.python.org/3.8/library/stdtypes.html#dict]) – Data as provided by the API.

	config_data (dict [https://docs.python.org/3.8/library/stdtypes.html#dict]) – A dict with all the config required for the tournament (combines guild and
game settings)

	
await request(method, *args, **kwargs)

	An util adding the credentials to the args before sending an API call.

Also wraps the request in a retry loop (max 3 then raise).

	
class tournaments.objects.ChallongeParticipant(member: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], tournament: tournaments.objects.base.Tournament)

	Bases: tournaments.objects.base.Participant

	
classmethod build_from_api(tournament: tournaments.objects.base.Tournament, data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict])

	Builds a new member from Challonge raw data.

	Parameters

	
	tournament (Tournament) – The current tournament

	data (dict [https://docs.python.org/3.8/library/stdtypes.html#dict]) – Data as provided by the API.

	
property player_id

	Challonge player ID.

	
await destroy()

	If the tournament has started, disqualifies a player on the bracket, else he’s removed
from the list of participants.

	
class tournaments.objects.ChallongeMatch(tournament: tournaments.objects.base.Tournament, round: int [https://docs.python.org/3.8/library/functions.html#int], set: str [https://docs.python.org/3.8/library/stdtypes.html#str], id: int [https://docs.python.org/3.8/library/functions.html#int], underway: bool [https://docs.python.org/3.8/library/functions.html#bool], player1: tournaments.objects.base.Participant, player2: tournaments.objects.base.Participant)

	Bases: tournaments.objects.base.Match

	
classmethod await build_from_api(tournament: tournaments.objects.base.Tournament, data: dict [https://docs.python.org/3.8/library/stdtypes.html#dict])

	Builds a new member from Challonge raw data.

This will also disqualify participants from the match not found in the server.

	Parameters

	
	tournament (Tournament) – The current tournament

	data (dict [https://docs.python.org/3.8/library/stdtypes.html#dict]) – Data as provided by the API.

WarnSystem

API Reference

	
class warnsystem.api.API(bot: redbot.core.bot.Red [https://docs.discord.red/en/latest/framework_bot.html#redbot.core.bot.Red], config: redbot.core.config.Config [https://docs.discord.red/en/latest/framework_config.html#redbot.core.config.Config], cache: warnsystem.cache.MemoryCache)

	Bases: object [https://docs.python.org/3.8/library/functions.html#object]

Interact with WarnSystem from your cog.

To import the cog and use the functions, type this in your code:

warnsystem = bot.get_cog('WarnSystem').api

Warning

If warnsystem is None [https://docs.python.org/3.8/library/constants.html#None], the cog is
not loaded/installed. You won’t be able to interact with
the API at this point.

Tip

You can get the cog version by doing this

version = bot.get_cog('WarnSystem').__version__

	
await get_case(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], user: Union[discord.user.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User], discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]], index: int [https://docs.python.org/3.8/library/functions.html#int]) → dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	Get a specific case for a user.

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild of the member.

	user (Union[discord.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User], discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]]) – The user you want to get the case from. Can be a discord.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User] if the member is
not in the server.

	index (int [https://docs.python.org/3.8/library/functions.html#int]) – The case index you want to get. Must be positive.

	Returns

	A dict [https://docs.python.org/3.8/library/stdtypes.html#dict] which has the following body:

	Return type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	Raises

	NotFound – The case requested doesn’t exist.

	
await get_all_cases(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], user: Optional[Union[discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], discord.user.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User]]] = None) → list [https://docs.python.org/3.8/library/stdtypes.html#list]

	Get all cases for a member of a guild.

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild where you want to get the cases from.

	user (Optional[Union[discord.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User], discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]]]) – The user you want to get the cases from. If this arguments is omitted, all cases of
the guild are returned.

	Returns

	A list of all cases of a user/guild. The cases are sorted from the oldest to the
newest.

If you specified a user, you should get something like this:

[
 { # case #1
 "level" : int, # between 1 and 5, the warning level
 "author" : Union[discord.Member, str], # the member that warned the user
 "reason" : Optional[str], # the reason of the warn, can be None
 "time" : datetime.datetime, # the date when the warn was set
 },
 {
 # case #2
 },
 # ...
]

However, if you didn’t specify a user, you got all cases of the guild. As for the user,
you will get a list [https://docs.python.org/3.8/library/stdtypes.html#list] of the cases, with another key for specifying the
warned user:

{ # case #1
 "level" : int, # between 1 and 5, the warning level
 "author" : Union[discord.Member, str], # the member that warned the user
 "reason" : Optional[str], # the reason of the warn, can be None
 "time" : datetime.datetime, # the date when the warn was set

 "member" : discord.User, # the member warned, this key is specific to guild
}

	Return type

	list [https://docs.python.org/3.8/library/stdtypes.html#list]

	
await edit_case(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], user: Union[discord.user.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User], discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]], index: int [https://docs.python.org/3.8/library/functions.html#int], new_reason: str [https://docs.python.org/3.8/library/stdtypes.html#str]) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Edit the reason of a case.

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild where you want to get the case from.

	user (Union[discord.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User], discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member]]) – The user you want to get the case from.

	index (int [https://docs.python.org/3.8/library/functions.html#int]) – The number of the case you want to edit.

	new_reason (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The new reason to set.

	Returns

	True [https://docs.python.org/3.8/library/constants.html#True] if the action succeeded.

	Return type

	bool [https://docs.python.org/3.8/library/functions.html#bool]

	Raises

	
	BadArgument – The reason is above 1024 characters. Due to Discord embed rules, you have to make it
 shorter.

	NotFound – The case requested doesn’t exist.

	
await get_modlog_channel(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], level: Optional[Union[int [https://docs.python.org/3.8/library/functions.html#int], str [https://docs.python.org/3.8/library/stdtypes.html#str]]] = None) → discord.channel.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]

	Get the WarnSystem’s modlog channel on the current guild.

When you call this, the channel is get with the following order:

	Get the modlog channel associated to the type, if provided

	Get the defult modlog channel set with WarnSystem

	Get the Red’s modlog channel associated to the server

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild you want to get the modlog from.

	level (Optional[Union[int [https://docs.python.org/3.8/library/functions.html#int], str [https://docs.python.org/3.8/library/stdtypes.html#str]]]) – Can be an int [https://docs.python.org/3.8/library/functions.html#int] between 1 and 5, a str [https://docs.python.org/3.8/library/stdtypes.html#str] ("all")
or None [https://docs.python.org/3.8/library/constants.html#None].

	If the argument is omitted (or None [https://docs.python.org/3.8/library/constants.html#None] is provided), the default modlog
channel will be returned.

	If an int [https://docs.python.org/3.8/library/functions.html#int] is given, the modlog channel associated to this warning
level will be returned. If a specific channel was not set for this level, the
default modlog channel will be returned instead.

	If "all" is returned, a dict [https://docs.python.org/3.8/library/stdtypes.html#dict] will be returned. It should be built
like this:

{
 "main" : 012345678987654321,
 "1" : None,
 "2" : None,
 "3" : None,
 "4" : 478065433996537900,
 "5" : 567943553912O46428,
}

A dict with the possible channels is returned, associated with an int [https://docs.python.org/3.8/library/functions.html#int]
corresponding to the channel ID set, or None [https://docs.python.org/3.8/library/constants.html#None] if it was not set.

For technical reasons, the default channel is actually named "main" in the dict.

	Returns

	channel – The channel requested.

Note

It can be None [https://docs.python.org/3.8/library/constants.html#None] if the channel doesn’t exist anymore.

	Return type

	discord.TextChannel [https://discordpy.readthedocs.io/en/latest/api.html#discord.TextChannel]

	Raises

	NotFound – There is no modlog channel set with WarnSystem or Red, ask the user to set one.

	
await get_embeds(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], member: Union[discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], warnsystem.api.UnavailableMember], author: Union[discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], str [https://docs.python.org/3.8/library/stdtypes.html#str]], level: int [https://docs.python.org/3.8/library/functions.html#int], reason: Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]] = None, time: Optional[datetime.timedelta [https://docs.python.org/3.8/library/datetime.html#datetime.timedelta]] = None, date: Optional[datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]] = None, message_sent: bool [https://docs.python.org/3.8/library/functions.html#bool] = True) → tuple [https://docs.python.org/3.8/library/stdtypes.html#tuple]

	Return two embeds, one for the modlog and one for the member.

Warning

Unlike for the warning, the arguments are not checked and won’t raise errors
if they are wrong. It is recommanded to call warn() and let
it generate the embeds instead.

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The Discord guild where the warning takes place.

	member (Union[discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], UnavailableMember]) – The warned member. Should only be UnavailableMember in case of a hack ban.

	author (Union[discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], str [https://docs.python.org/3.8/library/stdtypes.html#str]]) – The moderator that warned the user. If it’s not a Discord user, you can specify a
str [https://docs.python.org/3.8/library/stdtypes.html#str] instead (e.g. “Automod”).

	level (int [https://docs.python.org/3.8/library/functions.html#int]) – The level of the warning which should be between 1 and 5.

	reason (Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]]) – The reason of the warning.

	time (Optional[timedelta]) – The time before the action ends. Only for mute and ban.

	date (Optional[datetime]) – When the action was taken.

	message_sent (bool [https://docs.python.org/3.8/library/functions.html#bool]) – Set to False [https://docs.python.org/3.8/library/constants.html#False] if the embed couldn’t be sent to the warned user.

	Returns

	A tuple [https://docs.python.org/3.8/library/stdtypes.html#tuple] with the modlog embed at index 0, and the user embed at index 1.

	Return type

	tuple [https://docs.python.org/3.8/library/stdtypes.html#tuple]

	
await maybe_create_mute_role(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Create the mod role for WarnSystem if it doesn’t exist.
This will also edit all channels to deny the following permissions to this role:

	send_messages

	add_reactions

	speak

	Parameters

	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild you want to set up the mute in.

	Returns

	
	False [https://docs.python.org/3.8/library/constants.html#False] if the role already exists.

	list [https://docs.python.org/3.8/library/stdtypes.html#list] if the role was created, with a list of errors for each channel.
Empty list means completly successful edition.

	Return type

	Union[bool [https://docs.python.org/3.8/library/functions.html#bool], list [https://docs.python.org/3.8/library/stdtypes.html#list]]

	Raises

	
	MissingPermissions – The bot lacks the discord.Permissions.create_roles permission.

	discord.errors.HTTPException [https://discordpy.readthedocs.io/en/latest/api.html#discord.HTTPException] – Creating the role failed.

	
await format_reason(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], reason: Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]] = None) → str [https://docs.python.org/3.8/library/stdtypes.html#str]

	Reformat a reason with the substitutions set on the guild.

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild where the warn is set.

	reason (str [https://docs.python.org/3.8/library/stdtypes.html#str]) – The string you want to reformat.

	Returns

	The reformatted string

	Return type

	str [https://docs.python.org/3.8/library/stdtypes.html#str]

	
await warn(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], members: Iterable[Union[discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], warnsystem.api.UnavailableMember]], author: Union[discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], str [https://docs.python.org/3.8/library/stdtypes.html#str]], level: int [https://docs.python.org/3.8/library/functions.html#int], reason: Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]] = None, time: Optional[datetime.timedelta [https://docs.python.org/3.8/library/datetime.html#datetime.timedelta]] = None, date: Optional[datetime.datetime [https://docs.python.org/3.8/library/datetime.html#datetime.datetime]] = None, ban_days: Optional[int [https://docs.python.org/3.8/library/functions.html#int]] = None, log_modlog: Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]] = True, log_dm: Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]] = True, take_action: Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]] = True, automod: Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]] = True, progress_tracker: Optional[Callable[[int [https://docs.python.org/3.8/library/functions.html#int]], Awaitable[None [https://docs.python.org/3.8/library/constants.html#None]]]] = None) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Set a warning on a member of a Discord guild and log it with the WarnSystem system.

Tip

The message that comes with the following exceptions are already
translated and ready to be sent to Discord:

	NotFound

	LostPermissions

	MemberTooHigh

	MissingPermissions

	SuicidePrevention

	Parameters

	
	guild (discord.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild]) – The guild of the member to warn

	member (Iterable[Union[discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], UnavailableMember]]) – The member that will be warned. It can be an instance of
warnsystem.api.UnavailableMember if you need
to ban someone not in the guild.

	author (Union[discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], str [https://docs.python.org/3.8/library/stdtypes.html#str]]) – The member that called the action, which will be associated to the log.

	level (int [https://docs.python.org/3.8/library/functions.html#int]) – An int [https://docs.python.org/3.8/library/functions.html#int] between 1 and 5, specifying the warning level:

	Simple DM warning

	Mute (can be temporary)

	Kick

	Softban

	Ban (can be temporary ban, or hack ban, if the member is not in the server)

	reason (Optional[str [https://docs.python.org/3.8/library/stdtypes.html#str]]) – The optional reason of the warning. It is strongly recommanded to set one.

	time (Optional[timedelta]) – The time before cancelling the action. This only works for a mute or a ban.

	date (Optional[datetime]) – When the action was taken. Only use if you want to overwrite the current date and time.

	ban_days (Optional[int [https://docs.python.org/3.8/library/functions.html#int]]) – Overwrite number of days of messages to delete for a ban. Only used for warnings
level 4 or 5. If this is omitted, the bot will fall back to the user defined setting.

	log_modlog (Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]]) – Specify if an embed should be posted to the modlog channel. Default to True [https://docs.python.org/3.8/library/constants.html#True].

	log_dm (Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]]) – Specify if an embed should be sent to the warned user. Default to True [https://docs.python.org/3.8/library/constants.html#True].

	take_action (Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]]) – Specify if the bot should take action on the member (mute, kick, softban, ban). If set
to False [https://docs.python.org/3.8/library/constants.html#False], the bot will only send a log embed to the member and in the modlog.
Default to True [https://docs.python.org/3.8/library/constants.html#True].

	automod (Optional[bool [https://docs.python.org/3.8/library/functions.html#bool]]) – Set to False [https://docs.python.org/3.8/library/constants.html#False] to skip automod, preventing multiple warnings at once and
saving performances. Automod might trigger on a next warning though.

	progress_tracker (Optional[Callable[[int [https://docs.python.org/3.8/library/functions.html#int]], Awaitable[None [https://docs.python.org/3.8/library/constants.html#None]]]]) – an async callable (function or lambda) which takes one argument to follow the progress
of the warn. The argument is the number of warns committed. Here’s an example:

i = 0
message = await ctx.send("Mass warn started...")

async def update_count(count):
 i = count

async def update_msg():
 await message.edit(content=f"{i}/{len(members)} members warned.")
 await asyncio.sleep(1)

await api.warn(guild, members, ctx.author, 1, progress_tracker=update_count)

	Returns

	A dict of members which couldn’t be warned associated to the exception related.

	Return type

	dict [https://docs.python.org/3.8/library/stdtypes.html#dict]

	Raises

	
	InvalidLevel – The level must be an int [https://docs.python.org/3.8/library/functions.html#int] between 1 and 5.

	BadArgument – You need to provide a valid discord.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member] object, except for a
 hackban where a discord.User [https://discordpy.readthedocs.io/en/latest/api.html#discord.User] works.

	MissingMuteRole – You’re trying to mute someone but the mute role was not setup yet.
 You can fix this by calling maybe_create_mute_role().

	LostPermissions – The bot lost a permission to do something (it had the perm before). This
 can be lost permissions for sending messages to the modlog channel or
 interacting with the mute role.

	MemberTooHigh – The bot is trying to take actions on someone but their top role is higher
 than the bot’s top role in the guild’s hierarchy.

	NotAllowedByHierarchy – The moderator trying to warn someone is lower than them in the role hierarchy,
 while the bot still has permissions to act. This is raised only if the
 hierarchy check is enabled.

	MissingPermissions – The bot lacks a permissions to do something. Can be adding role, kicking
 or banning members.

	discord.errors.NotFound [https://discordpy.readthedocs.io/en/latest/api.html#discord.NotFound] – When the user ID provided for hackban isn’t recognized by Discord.

	discord.errors.HTTPException [https://discordpy.readthedocs.io/en/latest/api.html#discord.HTTPException] – Unknown error from Discord API. It’s recommanded to catch this
 potential error too.

	
enable_automod()

	Enable automod checks and listeners on the bot.

	
disable_automod()

	Disable automod checks and listeners on the bot.

	
await automod_check_for_autowarn(guild: discord.guild.Guild [https://discordpy.readthedocs.io/en/latest/api.html#discord.Guild], member: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], author: discord.member.Member [https://discordpy.readthedocs.io/en/latest/api.html#discord.Member], level: int [https://docs.python.org/3.8/library/functions.html#int])

	Iterate through member’s modlog, looking for possible automatic warns.

Level is the last warning’s level, which will filter a lot of possible autowarns and,
therefore, save performances.

This can be a heavy call if there are a lot of possible autowarns and a long modlog.

Errors

Custom error handling used for the cog and the API.

If you need to prevent and exception, do it like this:

warnsystem = bot.get_cog('WarnSystem')
api = cog.api
errors = cog.errors

try:
 await api.warn(5, user, "my random reason")
except discord.errors.Forbidden:
 print("Missing permissions")
except errors.InvalidLevel:
 print("Wrong warning level")
except:
 # occurs for any exception
 print("Fatal error")
else:
 # executed if the try succeeded
 print("All good")
finally:
 # always executed
 print("End of function")

	
exception warnsystem.errors.InvalidLevel

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The level argument for warn() is wrong.
It must be between 1 and 5.

	
exception warnsystem.errors.NotFound

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

Something was not found in the WarnSystem data. The meaning of this exception
depends of what you called, it may be a missing WarnSystem channel.

	
exception warnsystem.errors.MissingMuteRole

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

You requested a mute warn but the mute role doesn’t exist. Call
maybe_create_role() to fix this.

	
exception warnsystem.errors.BadArgument

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The arguments provided for your request are wrong, check the types.

	
exception warnsystem.errors.MissingPermissions

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The bot lacks a permission to do an action.

This is raised instead of discord.errors.Forbidden [https://discordpy.readthedocs.io/en/latest/api.html#discord.Forbidden] to prevent a useless
API call, we check the bot’s permissions before calling.

	
exception warnsystem.errors.MemberTooHigh

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The member to take action on is above the bot in the guild’s role hierarchy.

To fix this, set the bot’s top role above the member’s top role.
For more informations about Discord Permissions, read this: https://support.discordapp.com/hc/en-us/articles/206029707

This is raised instead of discord.errors.Forbidden [https://discordpy.readthedocs.io/en/latest/api.html#discord.Forbidden] to prevent a useless
API call, we check the bot’s permissions before calling.

	
exception warnsystem.errors.NotAllowedByHierarchy

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The bot is set to respect the role hierarchy; the moderator requested a warn against
someone equal or higher than them in the hierarchy, which is not allowed by Discord
permissions rules.

The moderator must have a role higher than the warned member to continue.

Note

This cannot be raised if the admins disabled the role hierarchy check.

	
exception warnsystem.errors.LostPermissions

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

The bot lost a permission it had.

This can be the permission to send messages in the modlog channel or use the mute role.

	
exception warnsystem.errors.SuicidePrevention

	Bases: Exception [https://docs.python.org/3.8/library/exceptions.html#Exception]

This is raised when the bot attempts to warn itself.

Warning Red will cause issues and is not designed for this.

 Python Module Index

 r |
 w

 		 	

 		
 r	

 	[image: -]
 	
 roleinvite	

 	
 	
 roleinvite.errors	

 		 	

 		
 w	

 	[image: -]
 	
 warnsystem	

 	
 	
 warnsystem.errors	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_get_all_rounds() (tournaments.objects.Tournament method)

 	
 	_update_match_list() (tournaments.objects.Tournament method)

 	_update_participants_list() (tournaments.objects.Tournament method)

A

 	
 	add_invite() (roleinvite.api.API method)

 	add_matches() (tournaments.objects.Streamer method)

 	add_participant() (tournaments.objects.Tournament method)

 	add_participants() (tournaments.objects.Tournament method)

 	allowed_roles (tournaments.objects.Tournament property)

 	
 	announce_sets() (tournaments.objects.Tournament method)

 	announcements_channel (tournaments.objects.Tournament attribute)

 	API (class in roleinvite.api)

 	(class in warnsystem.api)

 	automod_check_for_autowarn() (warnsystem.api.API method)

 	autostop_register (tournaments.objects.Tournament attribute)

B

 	
 	BadArgument

 	baninfo (tournaments.objects.Tournament attribute)

 	bot (tournaments.objects.Tournament attribute)

 	
 	bot_prefix (tournaments.objects.Tournament attribute)

 	build_from_api() (tournaments.objects.ChallongeMatch class method)

 	(tournaments.objects.ChallongeParticipant class method)

 	(tournaments.objects.ChallongeTournament class method)

C

 	
 	call_check_in() (tournaments.objects.Tournament method)

 	cancel() (tournaments.objects.Match method)

 	(tournaments.objects.Tournament method)

 	cancel_stream() (tournaments.objects.Match method)

 	cancel_timeouts() (tournaments.objects.Tournament method)

 	CannotAddRole

 	CannotGetInvites

 	category (tournaments.objects.Tournament attribute)

 	ChallongeMatch (class in tournaments.objects)

 	ChallongeParticipant (class in tournaments.objects)

 	ChallongeTournament (class in tournaments.objects)

 	channel (tournaments.objects.Match attribute)

 	(tournaments.objects.Streamer attribute)

 	check() (tournaments.objects.Participant method)

 	check_for_channel_timeout() (tournaments.objects.Tournament method)

 	
 	check_for_too_long_matches() (tournaments.objects.Tournament method)

 	check_inactive() (tournaments.objects.Match method)

 	check_integrity() (tournaments.objects.Streamer method)

 	checked_dq (tournaments.objects.Match attribute)

 	checked_in (tournaments.objects.Participant attribute)

 	checkin_channel (tournaments.objects.Tournament attribute)

 	checkin_phase (tournaments.objects.Tournament attribute)

 	checkin_reminders (tournaments.objects.Tournament attribute)

 	checkin_start (tournaments.objects.Tournament attribute)

 	checkin_stop (tournaments.objects.Tournament attribute)

 	cog_version (tournaments.objects.Tournament attribute)

 	config (tournaments.objects.Tournament attribute)

 	counterpicks (tournaments.objects.Tournament attribute)

 	create_channel() (tournaments.objects.Match method)

 	credentials (tournaments.objects.Tournament attribute)

 	current_match (tournaments.objects.Streamer attribute)

D

 	
 	delay (tournaments.objects.Tournament attribute)

 	destroy() (tournaments.objects.ChallongeParticipant method)

 	(tournaments.objects.Participant method)

 	
 	destroy_player() (tournaments.objects.Tournament method)

 	disable_automod() (warnsystem.api.API method)

 	disqualify() (tournaments.objects.Match method)

 	duration (tournaments.objects.Match property)

E

 	
 	edit_case() (warnsystem.api.API method)

 	elo (tournaments.objects.Participant attribute)

 	EmptyRolesList

 	enable_automod() (warnsystem.api.API method)

 	end() (tournaments.objects.Match method)

 	(tournaments.objects.Streamer method)

 	
 	end_checkin() (tournaments.objects.Tournament method)

 	end_registration() (tournaments.objects.Tournament method)

 	end_time (tournaments.objects.Match attribute)

 	escape_invite_links() (roleinvite.api.API method)

F

 	
 	find_match() (tournaments.objects.Tournament method)

 	find_participant() (tournaments.objects.Tournament method)

 	find_streamer() (tournaments.objects.Tournament method)

 	
 	force_end() (tournaments.objects.Match method)

 	forfeit() (tournaments.objects.Match method)

 	format_reason() (warnsystem.api.API method)

 	from_saved_data() (tournaments.objects.Tournament class method)

G

 	
 	game (tournaments.objects.Tournament attribute)

 	game_role (tournaments.objects.Tournament attribute)

 	get_all_cases() (warnsystem.api.API method)

 	get_case() (warnsystem.api.API method)

 	
 	get_embeds() (warnsystem.api.API method)

 	get_invites() (roleinvite.api.API method)

 	get_modlog_channel() (warnsystem.api.API method)

 	get_set() (tournaments.objects.Streamer method)

 	guild (tournaments.objects.Tournament attribute)

I

 	
 	id (tournaments.objects.Match attribute)

 	(tournaments.objects.Tournament attribute)

 	ignored_events (tournaments.objects.Tournament attribute)

 	insert_match() (tournaments.objects.Streamer method)

 	
 	InvalidLevel

 	InviteNotFound

 	is_bo5 (tournaments.objects.Match attribute)

 	is_top8 (tournaments.objects.Match attribute)

L

 	
 	launch() (tournaments.objects.Match method)

 	launch_sets() (tournaments.objects.Tournament method)

 	launch_streams() (tournaments.objects.Tournament method)

 	limit (tournaments.objects.Tournament attribute)

 	link (tournaments.objects.Streamer attribute)

 	
 	list_matches() (tournaments.objects.Tournament method)

 	list_participants() (tournaments.objects.Tournament method)

 	lock (tournaments.objects.Tournament attribute)

 	loop_task (tournaments.objects.Tournament attribute)

 	loser_categories (tournaments.objects.Tournament attribute)

 	LostPermissions

M

 	
 	mark_as_underway() (tournaments.objects.Match method)

 	Match (class in tournaments.objects)

 	match (tournaments.objects.Participant attribute)

 	match_object (tournaments.objects.Tournament attribute)

 	matches (tournaments.objects.Streamer attribute)

 	(tournaments.objects.Tournament attribute)

 	matches_to_announce (tournaments.objects.Tournament attribute)

 	maybe_create_mute_role() (warnsystem.api.API method)

 	
 	member (tournaments.objects.Participant attribute)

 	(tournaments.objects.Streamer attribute)

 	MemberTooHigh

 	MissingMuteRole

 	MissingPermissions

 	
 module

 	roleinvite.errors

 	warnsystem.errors

N

 	
 	name (tournaments.objects.Tournament attribute)

 	next_scheduled_event() (tournaments.objects.Tournament method)

 	
 	NotAllowedByHierarchy

 	NotFound

 	NotInvite

O

 	
 	on_hold (tournaments.objects.Match attribute)

P

 	
 	Participant (class in tournaments.objects)

 	participant_object (tournaments.objects.Tournament attribute)

 	participant_role (tournaments.objects.Tournament attribute)

 	participants (tournaments.objects.Tournament attribute)

 	
 	phase (tournaments.objects.Tournament attribute)

 	player1 (tournaments.objects.Match attribute)

 	player2 (tournaments.objects.Match attribute)

 	player_id (tournaments.objects.ChallongeParticipant property)

 	(tournaments.objects.Participant property)

Q

 	
 	queue_channel (tournaments.objects.Tournament attribute)

R

 	
 	ranking (tournaments.objects.Tournament attribute)

 	register_channel (tournaments.objects.Tournament attribute)

 	register_message (tournaments.objects.Tournament attribute)

 	register_participant() (tournaments.objects.Tournament method)

 	register_phase (tournaments.objects.Tournament attribute)

 	register_second_start (tournaments.objects.Tournament attribute)

 	register_start (tournaments.objects.Tournament attribute)

 	register_stop (tournaments.objects.Tournament attribute)

 	relaunch() (tournaments.objects.Match method)

 	remove_invite() (roleinvite.api.API method)

 	
 	remove_matches() (tournaments.objects.Streamer method)

 	request() (tournaments.objects.ChallongeTournament method)

 	reset() (tournaments.objects.Participant method)

 	(tournaments.objects.Tournament method)

 	
 roleinvite.errors

 	module

 	room_code (tournaments.objects.Streamer attribute)

 	room_id (tournaments.objects.Streamer attribute)

 	round (tournaments.objects.Match attribute)

 	round_name (tournaments.objects.Match attribute)

 	ruleset_channel (tournaments.objects.Tournament attribute)

S

 	
 	save() (tournaments.objects.Tournament method)

 	scores_channel (tournaments.objects.Tournament attribute)

 	seed_participants() (tournaments.objects.Tournament method)

 	send_message() (tournaments.objects.Match method)

 	send_start_messages() (tournaments.objects.Tournament method)

 	set (tournaments.objects.Match attribute)

 	set_room() (tournaments.objects.Streamer method)

 	set_scores() (tournaments.objects.Match method)

 	spoke (tournaments.objects.Participant attribute)

 	stages (tournaments.objects.Tournament attribute)

 	start() (tournaments.objects.Tournament method)

 	start_check_in() (tournaments.objects.Tournament method)

 	start_loop_task() (tournaments.objects.Tournament method)

 	start_registration() (tournaments.objects.Tournament method)

 	
 	start_stream() (tournaments.objects.Match method)

 	start_time (tournaments.objects.Match attribute)

 	status (tournaments.objects.Match attribute)

 	(tournaments.objects.Tournament attribute)

 	stop() (tournaments.objects.Tournament method)

 	stop_loop_task() (tournaments.objects.Tournament method)

 	stream_channel (tournaments.objects.Tournament attribute)

 	stream_queue_add() (tournaments.objects.Match method)

 	Streamer (class in tournaments.objects)

 	streamer (tournaments.objects.Match attribute)

 	streamer_role (tournaments.objects.Tournament attribute)

 	streamers (tournaments.objects.Tournament attribute)

 	SuicidePrevention

 	swap_match() (tournaments.objects.Streamer method)

T

 	
 	task (tournaments.objects.Tournament attribute)

 	task_errors (tournaments.objects.Tournament attribute)

 	time_until_warn (tournaments.objects.Tournament attribute)

 	to_channel (tournaments.objects.Tournament attribute)

 	to_dict() (tournaments.objects.Tournament method)

 	to_role (tournaments.objects.Tournament attribute)

 	
 	top_8 (tournaments.objects.Tournament attribute)

 	Tournament (class in tournaments.objects)

 	tournament (tournaments.objects.Match attribute)

 	(tournaments.objects.Participant attribute)

 	(tournaments.objects.Streamer attribute)

 	tournament_start (tournaments.objects.Tournament attribute)

 	tz (tournaments.objects.Tournament attribute)

U

 	
 	unmark_as_underway() (tournaments.objects.Match method)

 	unregister_participant() (tournaments.objects.Tournament method)

 	
 	update_invites() (roleinvite.api.API method)

 	update_streamer_list() (tournaments.objects.Tournament method)

 	url (tournaments.objects.Tournament attribute)

V

 	
 	vip_register_channel (tournaments.objects.Tournament attribute)

W

 	
 	warn() (warnsystem.api.API method)

 	warn_bracket_change() (tournaments.objects.Tournament method)

 	warn_length() (tournaments.objects.Match method)

 	warn_to_length() (tournaments.objects.Match method)

 	
 	warned (tournaments.objects.Match attribute)

 	
 warnsystem.errors

 	module

 	winner_categories (tournaments.objects.Tournament attribute)

 _images/RoleInvite.png
A new member joined|

[———>{ cefaultroles listare.

Roles from the.

given

Roles from the main
roles fst are given

We iterate every
invite linked.

Foles linked to this
invite are given

_images/InstantCommands-example.png
linstantcmd create

Red (D Today st 156 M
You're about to create a new command.
Your next message will be the code of the command.

If this is the first time you're adding instant commands, please read the wiki:
https://laggrons-dumb-cogs.readthedocs.io/instantcommands.html

From random inport choice

@commands . comnand()
@commands .guild_only()
async def lottery(ctx, *, text):
"""Say the text you want with a random member.

{0} is the user object
member = choice(ctx.guild.menbers)
auait ctx.send(text.format(menber))

return lottery

Red (D Today st 58P0
The command lottery was successfully added.

El Laggron T

at158PM

lottery Congratulations {0.mention} ! You just won a Nintendo Switch (spoiler: nope)

Red [Today at 158 PM
Congratulations @Foo Fighter ! You just won a Nintendo Switch (spoiler: nope)

_images/embed-left-bar.png
& =

@ ElLaggron | 348415857728159745

Level 1 warning (warn)
Wg

Member Moderator
@Laggron the Dragon @Laggron the Dragon
Reason

For docs purpose.

Status.

‘The member now has 26 warnings (23 warns)
Mon 07 October 201917:08

_images/embed-thumbnail.png
@ ElLaggron | 348415857728159745

Level 1 warning (warn)

‘A member got a level 1 warning.

‘Member Moderator

(@Laggron the Dragon (@Laggron the Dragon
Reason

Still for docs purpose | swear!

Status

“The member now has 27 warnings (24 warns)

Mon 07 October 20191742

_images/wiki.png
DUMB COGS

OFFICIAL WIKI

SN
& “

nav.xhtml

 Table of Contents

 		
 Welcome to Laggron’s Dumb Cogs’s official documentation!

 		
 InstantCommands

 		
 Installation

 		
 Usage

 		
 instantcommand

 		
 instantcommand create

 		
 instantcommad delete

 		
 instantcommand list

 		
 instantcommand source

 		
 instantcommand env

 		
 Frequently Asked Questions

 		
 It’s written in the help message that I can add a listener. How can I do so?

 		
 My command was added but doesn’t respond when invoked.

 		
 Can I use Config in my command?

 		
 How can limit a command for some users?

 		
 How can I import a module without problem?

 		
 RoleInvite

 		
 Installation

 		
 Usage

 		
 inviteset

 		
 inviteset add

 		
 inviteset remove

 		
 inviteset list

 		
 inviteset enable

 		
 Frequently Asked Question

 		
 Can I make it so the bot adds x roles if the invite used is unknown?

 		
 Can I make it so the bot always adds x roles, regardless of the invite used?

 		
 Can I make a custom welcome message for each invite link?

 		
 The bot suddenly stopped adding roles to the new members

 		
 Some roles are not added to the new members

 		
 An invite link was removed without any action

 		
 Say

 		
 Installation

 		
 Usage

 		
 say

 		
 saydelete

 		
 interact

 		
 Frequently Asked Questions

 		
 Can I send messages in another channel than the one where I typed the command?

 		
 Can I make the bot upload links?

 		
 Can I make the bot delete my message?

 		
 My bot is slow to delete messages

 		
 I am not allowed to use the command

 		
 Tournaments

 		
 Installation

 		
 Usage

 		
 Setting up the cog

 		
 Registration and check-in phases

 		
 Manage multiple configurations

 		
 Add a tournament

 		
 Start and manage the tournament

 		
 Manage streams

 		
 Additional resources

 		
 Common Challonge error codes

 		
 Troubleshooting

 		
 WarnSystem

 		
 Installation

 		
 Usage

 		
 Commands

 		
 warn

 		
 masswarn

 		
 wsunmute

 		
 wsunban

 		
 automod

 		
 warnset

 		
 warnsysteminfo

 		
 Additional resources

 		
 Migrating to WarnSystem 1.3

 		
 RoleInvite

 		
 API Reference

 		
 Errors

 		
 Tournaments

 		
 API Reference

 		
 Base

 		
 Challonge API

 		
 WarnSystem

 		
 API Reference

 		
 Errors

_static/minus.png

_static/plus.png

_static/file.png

